GBGS SCHEME

USN BAE402/BAS402

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Aerodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Gas tables and θ , β , μ chart are permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

TOTAL CONTRACTOR DISCO	HUR	3. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module – 1	M	L	C
Q.1	a.	Derive the equation to lifting flow around a circular cylinder.	10	L3	CO ₁
Z	b.	Derive the velocity potential function and stream function for doublet flow.	10	L3	CO1
		OR			
0.2	0	Explain about the various forces and moments acting in the airplane.	10	L2	CO1
Q.2	a.	Derive and explain about the classical thin airfoil theory and explain the	10	L3	CO1
	b.	application in camber airfoil.	10	20	001
		Module – 2			
0.1			10	L3	CO ₂
Q.3	a.	Derive and explain about the Prandtl's lifting line theory with the elliptic	10	LIS	COZ
	-	wing distribution.	10	L2	CO2
	b.	Explain about the types of drag acting on the airplane surface.	10	LZ	COZ
		OR OR	10	T 0	COA
Q.4	a.	Derive and briefly, explain about the vortex lattice method for wings.	10	L2	CO ₂
	b.	Explain about lift, disc and moments characteristics of complete airplane.	10	L2	CO ₂
		Module – 3			
Q.5	a.	Explain the horseshoe vertex and draw the vortex model for simplified	10	L2	CO3
		horse show vortex.			
	b.	Explain about the effect of swept wings and aerodynamic characteristics.	10	L2	CO3
		OR			
Q.6	a.	Explain about critical Mach number, drag divergence mach number, effect	10	L2	CO3
2.0		of thickness, camber and aspect ratio of wings.			
	b.	Explain about transonic area rule and subsonic, supersonic leading edges.	10	L2	CO3
		Module – 4			
Q.7	a.	Derive and explain about the Bernoulli's equation.	10	L3	CO4
Q./	b.	Explain with the derivation how to convert the pressure in to lift and drag	10	L2	CO4
	D.	forces.	10		
		OR			
0.0		Explain about the critical mach number and the drag divergence mach	10	L2	CO4
Q.8	a.	number and the drag divergence mach number with graphical			
		representation and effects in supersonic flows.	10	L3	CO ₄
	b.	Derive and explain about the flow through convergent divergent nozzles.	10	ШЭ	_ CO-
0 0	1	Module – 5	10	L2	COS
Q.9	a.	Derive and explain with the graphical representation of Rankine Hugoniot	10	112	COS
	-	equation.	10	L3	COS
	b.		10	L3	CO:
		by a wall into the flow with a turning angle of 20°. If the shock is reflected			
		by another wall. Determine the flow properties of mach number, pressure at			
		the downstream of the shock.			
		OR	1		T 60.
Q.10	a.	Derive the equation for Prandtl's relation for normal shock.	10	L3	COS
	b.	A uniform supersonic stream with mach number 3 pressure 1 atm and	10	L3	COS
		temperature 288K encounters a compression corner, which deflect the		,	
		stream as an angle of 20°. Calculate the fluid properties behind the shock			
		wave.			
		4 4 4 4			

* * * * *