

18AE72

Seventh Semester B.E. Degree Examination, June/July 2024 **Computational Fluid Dynamics**

Time: 3 hrs.

MGALU

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive momentum equation in non-conservative form and deduce it to conservative form. (12 Marks)
 - Write a short note on:
 - Shock capturing method
 - ii) Shock fitting method.

(08 Marks)

Derive substantial derivative equation and arrive at an expression in the following form:

 $\rho.\frac{\mathrm{D}\mathrm{u}}{\mathrm{D}\mathrm{t}} = \frac{\partial(\rho\mathrm{u})}{\partial\mathrm{t}} + \nabla(\rho\mathrm{u}\mathrm{V}).$ (10 Marks)

b. Define boundary conditions and write a note on physical boundary conditions used in CFD. (10 Marks)

Module-2

- How does a quasi-linear partial differential equation get classified and explain using 3 Cramer's rule. (10 Marks)
 - b. Describe the external features of elliptic equation and explain its impact on physical behaviour of flow field.

Explain the mathematical behaviour of parabolic equation along with one case-study.

Consider an irrotational, 2-D, inviscid, steady compressible flow, classify the characteristic lines using Eigen-value method for

$$(1 - M_{\infty}^{2}) \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} = 0$$

(10 Marks)

- With the help of relevant sketch, explain the elliptic grid generation. (10 Marks)
 - Write a note on the following:
 - Structured grids i)
 - ii) Unstructured grids.

(10 Marks)

- What are adaptive grids? Describe 2 types of grid adaptive methods. (10 Marks)
 - Describe Hermite polynomial interpolation.

(10 Marks)

			10AL/2
		Module-4	(10 Morks)
7	a.	Briefly explain about time marching and space marching.	(10 Marks) (10 Marks)
	b.	Summarize stability analysis of explicit, implicit and multistep method.	(10 Marks)
		OP	
		OR VI - VI - VI - Company in a mathod	(10 Marks)
8	a.	Illustrate on Lax-Wendroff marching method.	(10 manks)
	b.	Write a note on the following: i) Numerical viscosity	
		i) Numerical viscosityii) Upwind scheme	
		iii) Alternating direction implicit.	(10 Marks)
		m) Theomating direction improve	
		Module-5	
9	a.	Briefly explain about cell-centered scheme.	(10 Marks)
	b.	Summarize about spatial discritization.	(10 Marks)
		OR	(10 M)
10	a.	Briefly explain cell-vertex scheme overlapping control volume.	(10 Marks) (10 Marks)
	b.	Explain high resolution scheme and upwind biasing.	(10 Marks)

		A .	
			7.9
	, a		
1 1			
		V.	
		2 of 2	
1000	e		

18AE72