

Plant Physiology and Phytohormones

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Discuss the differences between active transport and passive transport for the uptake of water and minerals in plants.	10	L2	C01
	b.	Discuss the differences between transpiration and evaporation. Explain the	10	L2	COI
		different kinds of transpiration in plants.	10		
		OR			1
Q.2	a.	Define ascent of sap. Explain the various physical force theories in detail.	10	L1	COI
	b.	The lack of mineral elements results in the inability of the plant to complete	10	L1	COI
		its life cycle. List the role and importance of any three essential and any			
		two non-essential mineral elements and their deficiency symptoms.			
		Module – 2			
Q.3	a.	Photosynthetic apparatus consists of two components namely Chloroplasts	10	L2	C01
		and photosynthetic pigments. Summarize in detail the various			
		photosynthetic pigments and their function. Draw a neat labelled diagram			
		of chloroplast.			
	b.	EMP pathway paved the way for the synthesis of two molecules of ATP,	10	L3	CO2
		NADPH ₂ and pyruvate – Illustrate the ten enzyme-catalyzed reactions of			
		the pathway.			
		OR			
Q.4	a.	Outline the cycle that deals with the synthesis of carbohydrates and the	10	L1	CO2
		regeneration of ribulose biphosphate.			
	b.	Illustrate the right enzyme-catalyzed reactions of Krebs cycle in detail.	10	L3	CO2
		Module – 3			
Q.5	a.	Define phytohormones. Identify the structure, physiological effects and	10	L1	CO2
		practical applications of auxin as a plant growth regulator.			
	b.	Sketch in detail the role, physiological effects and practical applications of	10	L3	CO2
		gibberellins.			
		OR			
Q.6	a.	Identify in detail the structure, physiological effects and applications of cytokinin.	10	L3	CO2
	b.	Sketch in detail the role, physiological effects and applications of ethylene	10	L3	CO2
		both as a plant growth promoter and inhibitor.			
		Module – 4			
Q.7	a.	Define seed dormancy. Analyze in detail the causes, forms and various	10	L4	CO3
		method of breaking seed dormancy in plants.		,	-
	b.	Examine the differences between photo-morphogenesis and	10	L3	CO3
		photoperiodism.			
		photoperiodistin			1

BBT306D

Q.8	a.	Explain the process of sexual reproduction in plants with the help of a	10	L1	CO3
		labelled diagram.			
	b.	Describe in detail the various types of Nastic and tropic movements in	10	L2	CO3
		plants in response to various environmental ques.			
		Module – 5			
Q.9	a.	Explain in detail the mechanism of plant response to abiotic stress such as	10	L2	CO3
		temperature.			
	b.	Explain in detail the mechanism of plant response to biotic stress such as	10	L1	CO3
		pathogens.			
		OR			
Q.10	a.	Explain in detail the mechanism of plant response to abiotic stress such as	10	L1	CO3
		drought.			
	b.	Explain in detail the mechanism of plant response to biotic stress such as	10	L1	CO3
		herbivores.			