


2. M : Marks , L: Bloom's level , C: Course outcomes.

|     |    | Module – 1                                                                                                                                                                                                                                                                                                                                                     | M  | L  | C   |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|
| Q.1 | a. | Derive Bernoullis theorem stating all the assumptions.                                                                                                                                                                                                                                                                                                         | 10 | L3 | COI |
|     | b. | Define fluid. Give the classifications of fluids with examples.                                                                                                                                                                                                                                                                                                | 5  | L1 | COI |
|     | c. | With a neat sketch, explain Reynolds experiment.                                                                                                                                                                                                                                                                                                               | 5  | L2 | CO1 |
|     | L  | OR                                                                                                                                                                                                                                                                                                                                                             |    | 1  |     |
| Q.2 | a. | The right limb of U-tube manometer containing mercury is open to<br>atmosphere while the left limb is connected to a pipe in which a fluid of<br>specific gravity 0.9 is flowing. The centre of pipe is 12cm below the level<br>of mercury in the right limb. Find the pressure of fluid in the pipe, if the<br>difference of mercury level in 2 limb is 20cm. | 10 | L3 | COI |
|     | b. | Define free settling, hindered settling and sedimentation.                                                                                                                                                                                                                                                                                                     | 5  | L1 | CO1 |
|     | c. | With a neat sketch, explain continuous thickener (Dorr thickener).                                                                                                                                                                                                                                                                                             | 5  | L2 | CO1 |
|     | 1  | Module – 2                                                                                                                                                                                                                                                                                                                                                     |    | 1  |     |
| Q.3 | a. | With a neat sketch, explain working of reciprocating pump.                                                                                                                                                                                                                                                                                                     | 7  | L2 | CO2 |
|     | b. | State and explain different laws of size reduction.                                                                                                                                                                                                                                                                                                            | 6  | L2 | CO2 |
|     | c. | Derive the discharge equation for venturimeter.                                                                                                                                                                                                                                                                                                                | 7  | L3 | CO2 |
|     | 1  | OR                                                                                                                                                                                                                                                                                                                                                             |    |    |     |
| Q.4 | a. | Explain the working and construction of Rotary drum filtration.                                                                                                                                                                                                                                                                                                | 7  | L2 | CO3 |
|     | b. | <ul> <li>Write a note on the following:</li> <li>i) Differential analysis</li> <li>ii) Cumulative analysis</li> <li>iii) Rotameter.</li> </ul>                                                                                                                                                                                                                 | 6  | L2 | CO3 |
|     | c. | An orificemeter with an orifice diameter of 10cm is inserted in a pipe of 20cm the pressure gauge fitted at upstream and downstream of a orificemeter gives the reading of $19.62$ N/cm <sup>2</sup> and $9.81$ N/cm <sup>2</sup> respectively. Find the discharge if discharge coefficient C <sub>d</sub> is 0.6.                                             | 7  | L3 | CO2 |
|     |    | Module – 3                                                                                                                                                                                                                                                                                                                                                     |    |    |     |
| Q.5 | a. | Briefly explain the different modes of heat transfer.                                                                                                                                                                                                                                                                                                          | 4  | L2 | CO4 |
|     | 1  | 1 of 2                                                                                                                                                                                                                                                                                                                                                         |    | I  |     |

|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>BBT302</b> |    |     |
|------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|-----|
|      | b. | Derive an expression for heat flow through a composite wall (flat surface) with 3 layers in series by conduction.                                                                                                                                                                                                                                                                                                                                                                                           | 8             | L2 | CO4 |
|      | c. | <ul> <li>A steel pipe of 115mm outside diameter and a wall thickness of 5mm is covered with 50mm thickness magnesia insulation. Inside temperature is 150°C and that of outside surface temperature is 32°C. Determine:</li> <li>i) Heat loss per metre length of pipe (O/L).</li> <li>ii) Temperature at the surface between steel pipe and insulation.</li> <li>Data: K<sub>pipe</sub> = 43.03 W/mK<br/>K<sub>magnesia</sub> = 0.07 W/mK</li> </ul>                                                       | 8             | L3 | CO4 |
|      |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1  |     |
| Q.6  | a. | With a neat sketch, explain the construction and working of 1-2 shell and tube heat exchanger.                                                                                                                                                                                                                                                                                                                                                                                                              | 7             | L3 | CO5 |
|      | b. | Derive an expression for Log Mean Temperature Difference (LMTD).                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7             | L4 | CO5 |
|      | c. | <ul> <li>Write a note on the following:</li> <li>i) Fouling factor</li> <li>ii) Fourier's law</li> <li>iii) Overall heat transfer coefficient.</li> </ul>                                                                                                                                                                                                                                                                                                                                                   | 6             | L3 | CO5 |
|      |    | Module – 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |    |     |
| Q.7  | a. | Derive an expression for diffusion of a component through a stagnant fluid from Fick's law of diffusion.                                                                                                                                                                                                                                                                                                                                                                                                    | 10            | L3 | CO4 |
|      | b. | Explain the experimental method for measurement of diffusivity (Stefan's experiment).                                                                                                                                                                                                                                                                                                                                                                                                                       | 10            | L3 | CO4 |
|      | ,  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |    |     |
| Q.8  | a. | Derive an expression for diffusion of component for an equimolar counter diffusion.                                                                                                                                                                                                                                                                                                                                                                                                                         | 10            | L3 | CO4 |
|      | b. | Briefly explain mass transfer coefficient and their correlations.                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10            | L2 | CO4 |
|      | 1  | Module – 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 1  |     |
| Q.9  | a. | A liquid mixture has a relative volatility ( $\alpha$ ) of 2.5. Compute VLE data for<br>the liquid mixture. The above mentioned liquid mixture is to be fed to the<br>distillation column for separation. Feed is a liquid at its boiling point with<br>50 mol% of more volatile component. The product contains 95 mol% more<br>volatile component and residue contains 10 mol% MVC. Reflux ratio R is<br>2.5. Calculate the number of theoretical plates required and also the<br>position of feed plate. | 10            | L3 | COS |
|      | b. | With a neat sketch, explain the working of simple distillation.                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10            | L3 | CO5 |
|      | 1  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |    |     |
| Q.10 | a. | With a neat sketch, explain the working of tray dryer.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10            | L3 | CO5 |
|      | b. | Discuss briefly an applications of extractions. Add a note on rotating disc contactor type extraction.                                                                                                                                                                                                                                                                                                                                                                                                      | 10            | L3 | C05 |