CBCS SCHEME

USN

BBT402

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Biostatistics and Tools

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
0.1		Define Bio-Statistics and explain its importance	06	L2	CO1
Q.1	a. b.	The following table shows the area an millions of Sq. km of oceans o		L2	CO1
	D.	world. Draw a pie chart to represent the data.			
		Ocean Pacific Atlantic Indian Antarctic Arleta			
		Area (m.sq.km) 70.8 41.2 28.5 7.6 4.8			
	0	Draw the Histogram and frequency polygon for the following frequency	y 07	L2	CO1
	distribution.				
		Mid value of 2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5			
		class interval			
		Frequency 7 10 20 13 17 10 14 9			
		OR		,	
Q.2	a.	Calculate mean, media and mode using the below given data:	08	L2	CO1
Z.=		Weight (in 93- 98- 103- 108- 113- 118- 123- 128-			
		kg) 97 102 107 112 117 122 127 132			
		No. of 3 5 12 17 14 6 3 1			
		students			
					001
	b.	From the following data, compute the value of Harmonic mean.	05	L2	CO1
		Value (x) 10 15 20 25 10 5			
		Frequency (f) 25 32 28 48 21 11	4 0=	~ ~	601
	c.	Data recorded on length of carrots (cms). Calculate the mean deviation ar	nd 07	7 L2	COI
		its coefficient length (cms) = 9.2, 9.6, 10.0, 11.0, 12.6, 9.8, 10.2, 9.	/,		
		12.7, 10.6	2		
		Module – 2	07	L2	CO1
Q.3	a.		07	LL	COI
		x 36 23 27 28 28 29 30 31 33 35			
		y 29 18 20 22 27 21 29 27 29 28	fe		
		Find the two regression lines and calculate the husband age when the wi			
		is 16-year-old. Three judges A, B, C give the following ranks. Find which pair of judg	es 07	L3	COI
	b.	Three judges A, B, C give the following ranks. This which pair of judg	00 07	Lie	
-		has common approach. $A = x \mid 1 \mid 6 \mid 5 \mid 10 \mid 3 \mid 2 \mid 4 \mid 9 \mid 7 \mid 8$			
		A - X = 0			
		B y 3 3 0 1			
			06	L3	CO
	c.				
		<u> </u>			
		y 1 1.8 1.3 2.5 2.3			

		0.7			
		OR	0 =	~ ~	~~1
Q.4	a.	The probability that a man will live upto 70 is 0.65 out of 10 men now at	07	L2	CO ₁
		the age of 60, find the probability that			
		(i) At least 7 will live upto 70			
		(ii) Exactly 9 will live upto 70			
		(iii) At most 9 will live upto 70			
	b.	Fit a Poisson distribution for the following data and calculate the theoretical	07	L3	CO1
	~ *	frequencies:			
		x 0 1 2 3 4			
		y 122 60 15 2 1			
		y 122 00 13 2 1			
	c.	In a normal distribution, 31% of the items are under 45 and 8% of the items	06	L3	CO1
		are over 64. Find the mean and standard deviation of the distribution.		20	
		[Given $\phi_{\alpha}(0.5) = 0.1915$, $\phi_{\alpha}(1.4) = 0.4192$]			
		[Given $\psi_{\alpha}(0.5) = 0.1715$, $\psi_{\alpha}(1.4) = 0.4172$]			
		Module – 3			
0.5			10	Т 2	COA
Q.5	a.	What is Ecological Study? Mention its advantages and disadvantages.	10	L2	CO ₂
	+-		4.0	~ ~	57.0.0
	b.	Explain the experimental epidemiology and mention the types of	10	L2	CO ₂
		experimental studies.			
		OR			l
Q.6	a.	Explain the concept of Descriptive study and mention its advantages and	10	L2	CO ₂
Q.o	a.	disadvantages.	10	LIZ	COZ
		disadvantages.			
	b.	Explain the different types of blinding and its importance.	10	L2	CO2
	D.	Explain the different types of officing and its importance.	10	112	COZ
		Module – 4			
Q.7	a.	Three varieties A, B and C of Mungbean are tested in a randomized block	10	L4	CO3
Q. /	a.	design with four replications. The plot yield in pounds are as follows:	10	LH	COS
		A 6 C 5 A 8 B 9			
		C 8 A 4 B 6 C 9			
		B 7 B 6 C 10 A 6			
		Analyze the experimental yield and state your conclusion.			
	b.	Present your conclusions after analysis of variance to the following results	10	L4	CO3
		of the Latin Square design experiment conducted in respect to five			
		Fertilizers, which were used on plots of different fertility.			
		A B C D E			
		16 10 11 9 9			
		E C A B D			
		10 9 14 12 11			
		B D E C A			
		15 8 8 10 18			
		D E B A C			
		12 6 13 13 12			
		C A D E B			
		13 11 10 7 14			
		Δ			

		OR			
Q.8	a.	An experiment was conducted on the yield of potatoes in a Randomized	10	L4	CO3
		block design with four replications. Analyze the data and conclude the			
		results.			
		Block Treatment Combinations			
		(1) (1) K P KP			
		(2) P (1) K KP			
		(2) P (1) K KP 40 26 36 38			
		(3) (1) K KP P			
		$\begin{vmatrix} (3) & (1) & 12 & 12 \\ 29 & 20 & 30 & 20 \end{vmatrix}$			
		(4) KP K P (1)			
		34 31 24 28			
	b.	Analyze and interpret the following statistics concerning output of wheat	10	L4	CO3
		per field obtained as a result of experiment conducted to test four varieties			
		of wheat viz., A, B, C, D under a Latin – Square design.			
		C B A D 23 20 20			
		A D C B			
		19 19 21 18			
		B A D C			
		19 14 17 20			
		D C B A			
		17 20 21 15			
Q.9	0	Module – 5 Explain the following terms:	06	L1	CO3
Q.9	a.	i) Sampling distribution	UU	LI	COS
		ii) Testing of hypothesis			
		iii) Type I and Type II error			
	b.	One type of aircraft is found to develop engine trouble in 5 flights out of a	07	L3	CO ₃
		total of 100 and another type in 7 flights out of a total 200 flights. Is there a			
		significant difference in the two types of aircrafts so far as engine defects are concerned? Test at 5% significance level.			
		are concerned: Test at 370 significance level.			
	c.	Five dice were thrown 96 times and the numbers 1, 2 or 3 appearing on the	07	L3	CO3
		face of the dice follows the frequency distribution as below.			
		No. of dice showing 1, 2 or 3 5 4 3 2 1 0			
		Frequency 7 19 35 24 8 3			
		Test the hypothesis that the data follows a Binomial distribution.			
		$(\chi_{0.05}^2 = 11.07 \text{ for 5 df})$			
		OR			
Q.10	a.	Explain the following terms:	02	L1	CO3
2.10		(i) Null Hypothesis			
		(ii) Alternative Hypothesis			

b.	For the following data, test the hypothesis that the median measure in population X is less than the median measure in population Y, using the Mann - Whitney U-test using $\alpha = 0.05$ for $n_1 = 4$, $n_2 = 7$ at 5% level of	08	L4	CO3
	X 60 45 23 32 32 Y 10 25 20 54 32 65 8			
c.	Three different kinds of food are tested on three groups of rats for 5 weeks. The objective is to check the difference in mean weight (in grams) of the rats per week. Apply one way ANOVA using a 0.05 significance level to the following data: Food 1 8 12 19 8 6 11 Food 2 4 5 4 6 9 7 Food 3 11 8 7 13 7 9	10	L3	CO3
	* * * *			
		is the state of th		
	4 of 4			
			415	