

Fourth Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Analysis of Structures

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

_	Module – 1	M	L	С
Q.1 ;	Find the static and kinematic indeterminacies of the following structures. Refer Fig.Q.1(a).	8	L3	CO1
b	forces in the members pictorially and tabulate the results.	12	L3	CO1
	Fig.Q.1(b) OR			
Q.2 a		14	L2 L3	COI
	11g.Q.2(0)			

					BCV401	
		Module – 2				
Q.3	a.	State and explain Mohr's theorems.	6	L1	CO2	
	b.	Analyze the beam shown in Fig.Q.3(b) using moment area method. Take $EI = 15000 \text{kN-m}^2$.	14	L3	CO2	
		OR				
Q.4	a.	State principle of virtual displacements and forces.	5	L1	CO2	
	b.	Derive the expression for strain energy due to bending.	10	L2	CO2	
	c.	State and explain Castigliano's theorems.	5	L1	CO2	
		Module – 3			1	
Q.5		A three hinged parabolic arch having supports at different levels is of span 60m. Its abutments A and B are at depths of 15m and 30m from crown C. The arch carries UDL of 40kN/m over the portion AC and a point load of 200kN at a point 10m from B. Find the reactions, normal thrust, radial shear and bending moment at 15m from support A.	20	L3	CO3	
		OR				
Q.6	a.	Explain the method of deriving equations for cable profile and tension in the cable when it is supported at the same level and subjected to UDL.	6	L2	CO3	
	b.	A cable of uniform section is suspended between two supports of 100m span. It carries a UDL of 10kN/m spread over the horizontal span. The lowest point of the cable sags 10m below the supports. Find: i) Maximum and minimum tension in the cable. ii) Minimum cross-sectional area of the cable required, if the allowable stress is 300MPa. iii) Length of the cable.	14	L3	CO3	
		Module – 4				
Q.7	a.	Analyze the propped cantilever shown in Fig.Q.7(a) by using slope-deflection method. Draw bending moment and shear force diagrams. Fig.Q.7(a)	8	L4	CO4	

Analyze the continuous beam ABCD shown in Fig.Q.7(b) by 12 L4 CO4 slope-deflection method. Draw bending moment diagram. Take EI constant. Fig.Q.7(b) OR Q.8 Analyze the portal frame subjected to loads as shown in Fig.Q.8. Consider L4 **CO4** sway effects also draw bending moment diagram. By slope deflection method. 4m Fig.Q.8 Module - 5Q.9 Analyze the continuous beam shown in Fig.Q.9 by moment distribution 20 L4 **CO5** method. The support B sinks by 10mm. Take $E = 2 \times 10^5 \text{N/mm}^2$ and $I = 120 \times 10^{-6} \text{m}^4$. Fig.Q.9

				BC	V491			
OR								
Q.10	a.	Explain fixed end moments for different loading conditions with relevant diagrams.	5	L2	COS			
	b.	Analyze the frame shown in Fig.Q.10(b) by moment distribution method and draw bending moment diagram. Assume EI constant. 20kg/ B	15	L4	COS			