

18CV744

eventh Semester B.E. Degree Examination, June/July 2024 **Design of Hydraulic Structures**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Any assumptions considered for design need to be justified with reasons.

Module-1

What do you understand by Gravity Dam? Explain various forces that act on gravity dam 1 (10 Marks)

Discuss in brief various modes of failure of gravity dam.

(10 Marks)

OR

What do you understand by Elementary profile of gravity Dam? Derive an expression for 2 determining the base width of such a dam on:

i) no tension criterion ii) no sliding criterion. b. Write note on: Galleries" and "Joints" in gravity dam.

(10 Marks)

(10 Marks)

Module-2

What are the various causes of failure of earthdam? Discuss with the relevant sketches. 3

(10 Marks)

Explain how to determine phreatic line with filter using 'Casagrande's method'. (10 Marks)

OR

Define "Earth Dam". Mention the advantages and limitations of earth dam over other dams. (10 Marks)

An earth dam made of a homogeneous material has a horizontal filter and other parameters as mentioned below. Determine the phreatic line and seepage quantity through body of the dam.

Parameter of Earth dam:

Top level of dam 180.000m Deepest river bed level = 158.000m HFL of river 177.500m Top width 4.5m

u/s slope d/s slope

Horizontal filter from d/s toe of dam = 25m

Coefficient of permeability of dam material $K = 5 \times 10^{-4}$ cm/s

(10 Marks)

Module-3

- 5 What is Spillway? What are its functions? Enumerate various types of spillways. (10 Marks)
 - b. Draw neat diagram of 'ogee spillway' and explain it design criteria.

(10 Marks)

OR

- a. Explain Bligh's Creep theory and list the limitation of Bligh's creep theory. 6 (10 Marks)
 - The c/s of a weir is shown in Fig Q6(b)
 - Calculate: i) Average hydraulic gradient
 - ii) UP lift pressure at points A, B and C
 - iii) Thickness of concrete apron at points A, B and C.

Fig Q6(b)

(10 Marks)

Module-4

- 7 a. Describe the necessity of Cross-Drainage Works (CDW). Outline the different types of CDW. (10 Marks)
 - b. Explain the following:
 - i) Level crossing
 - ii) Syphom Aqueduct

(10 Marks)

OR

8 Design the suitable CDW for the data given below:

CAN	IAL	T.
Flow rate	Ŧ	$30 \text{m}^3/\text{s}$
FSL	44,	251.500m
CBL		250.000m
Canal bed width	, 'Y =	20m
Side slope	=	$1\frac{1}{2}:1$
Manning's constant	(n) =	0.016

DRAINAGE	
High flood discharge =	$= 250 \text{m}^3/\text{s}$
HFL =	= 247.500m
High flood depth =	2.5m
General G.L	= 251.1000m

(20 Marks)

Module-5

- What do you by Canal Regulation works? Discuss the functions of head regulation and cross regulators.

 (10 Marks)
 - b. With the help of neat sketch, describe the different types of canal fall (any four). (10 Marks)

OR

- 10 a. What is Canal outlet? Write down the requirements that an out let should fulfill. (06 Marks)
 - b. How do you remove surplus water from an irrigation channel? Explain. (06 Marks)
 - c. Distinguish clearly between non-modular and semi-modular outlets. Give examples.

(08 Marks)

* * * * *