BCS302

Third Semester B.E./B.Tech. Degree Supplementary Examination June/July 2024

Digital Design and Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		2. M: Marks, L: Bloom's level, C: Course outcomes. Module – 1	M	L	С
Q.1	a.	Simplify the Boolean function i) $F(x, y, z) = \Sigma(2, 3, 4, 5)$ ii) $F(x, y, z) = \Sigma(3, 4, 6, 7)$	10	L3	CO1
	b.	Obtain a minimum product of sum with a Karnaugh Map F(w, x, y, z) = x'z' + wyz + w'y'z' + x'y	10	L3	CO1
		OR			
Q.2	a.	Define multiplexer. Explain 2 to 1 line multiplexer.	10	L2	CO1
	b.	Write the verilog code and time diagram for the given circuit with propagation delay where the AND, OR gate has a delay of 30ns and 10ns.	5	L2	CO1
		Fig Q2(b)			
	c.	Explain implementation of full adder with logic diagram.	5	L3	CO1
		Module – 2	1		1
Q.3	a.	Explain with neat diagram and 4 input priority encodes.	10	L2	CO2
э.	b.	Explain 2: 4 time decoder with help of logic diagram and truth table.	10	L2	CO2
		OR			
Q.4	a.	Define Latch. Explain S-R flip flop based on NOR Gate with neat diagram.	10	L2	CO2
	b.	Explain clocked D flip flop with neat diagram.	10	L2	CO2
		Module – 3			
Q.5	a.	With neat diagram, explain the basic operational concepts of computers.	10	L2	CO3
	b.	Write a program to evaluate arithmetic statement $Y = (A + B) * (C + D)$ using 3 address, 2 address, one address and zero address instruction.	10	L3	CO3
		OR			
Q.6	a.	Describe the concept of Blanch instruction with example.	10	L2	CO3
	b.	Explain 5 addressing modes with example.	10	L2	CO3

		Module – 4			
Q.7	a.	Explain the I/O interfacing and I/O device with computers.	10	L2	CO4
	b.	What is Bus Arbitration? Explain types of bus arbitration.	10	L2	CO4
		OR			
Q.8	a.	What is cache memory? Explain the different type of cache mapping function.	10	L2	CO4
	b.	Explain basic concepts involved for memory structures of computers.	10	L2	CO4
		Module – 5	1		1
Q.9	a.	Explain with neat diagram of single bus organization.	10	L2	CO5
	b.	Explain complete execution steps for instruction ADD (R3), R1.	10	L2	CO5
		OR			
Q.10	a.	Explain execution of complete instruction carry out.	10	L2	CO5
	b.	What is pipeline? Explain with example of pipeline performance.	10	L2	CO5

* * * * *