BCS405A

MCA Fourth Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Discrete Mathematical Structures

CBCS SCHEME

USI

ibrary

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Define Tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology by constructing the truth table.	6	L1	C01
	b.	Prove the following using the laws of logic: $P \rightarrow (q \rightarrow r) \Leftrightarrow (p \land q) \rightarrow r$	7	L2	C01
	c.	Give i) Direct proof ii) indirect proof iii) proof by contradiction for the following statement: "If n is an odd integer then $n + 9$ is an even integer".	7	L3	CO1
	1	OR			
Q.2	a.	Test whether the following arguments are valid: $p \rightarrow q$ $r \rightarrow s$ $\frac{\neg q \lor \neg s}{\therefore \neg (p \land r)}$	6	L2	COI
	b.	 Write the following argument in symbolic form and then establish the validity. If a triangle has two equal sides, then it is isosceles. If a triangle is isosceles, then it has two equal angles. The triangle ABC does not have two equal angles. ∴ ABC does not have two equal sides. 	7	L1	CO1
	c.	For the following statements, the universe comprises all non-zero integers. Determine the truth value of each statement: i) $\exists x \exists y [xy = 1]$ ii) $\exists x \forall y [xy = 1]$ iii) $\forall x \exists y [xy = 1]$ iv) $\exists x \exists y [(2x + y = 5) \land (x - 3y = -8)]$ v) $\exists x \exists y [(3x - y = 7) \land (2x + 4y = 3)]$		L2	CO1
		Module – 2	I		
Q.3	a.	Prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 =$ $\frac{n(2n+1)(2n-1)}{3}$ by mathematical Induction.	6	L2	CO2
		1 of 3			

405A	BCS]			
CO2	L3	7	Prove that every positive integer $n \ge 24$ can be written as a sum of 5's and / or 7's.		
CO2	L3	7	Obtain a recursive definition for the sequence $\{a_n\}$ in each of the following cases: i) $a_n = 5n$ ii) $a_n = 3n + 7$ iii) $a_n = 2 - (-1)^n$		
			OR A		
CO2	L2	6	Prove that for any positive integer n, $\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}} = 1 - \frac{F_{n+2}}{2^{n}}$, F_{n} denote the fibonacci number.	9.4	
CO2	L2	7	 How many arrangement are there for ail the letters in the word "SOCIOLOGICAL". In how many of these arrangements. i) A and G are adjacent ii) All vowels are adjacent. 		
CO2	L2	7	Determine the coefficient of $a^2b^3c^2d^5$ in the expansion of $(a + 2b - 3c + 2d + 5)^{16}$.		
CO3	L2	6	$Module - 3$. Let A = {1, 2, 3, 4, 6} and R be a relation on A defined by a ^R b if and only if "a is a multiple of b". Write down the relation R, relation matrix M(R) and draw its digraph. List out its indegree and out degree.	2.5	
CO3	L3	7	Let f and g be functions from R to R defined by $f(x) = ax + b$ and $g(x) = 1 - x + x^2$. If (gof) (x) = $9x^2 - 9x + 3$ determine a and b.		
CO3	L2	7	State Pigeon hole principle. Show that if $n + 1$ numbers are chosen from 1 to 2n then at least one pair add to $2n + 1$.		
001	X 1	6	OR		
CO3	L1	6	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x - 5, \text{ if } x > 0\\ 1 - 3x, \text{ if } x \le 0 \end{cases}$ find $f(-1), f(5/3), f^{1}(0), f^{1}(-3), f^{1}([-5, 5]) \text{ and } f^{1}([-6, 5]).$	2.6	
CO3	L2	7	Let f, g, h be functions from Z to Z defined by $f(x) = x - 1$, $g(x) = 3x$, $h(x) = \begin{cases} 0, \text{if } x \text{ is even} \\ 1, \text{if } x \text{ is odd} \end{cases}$ Determine (fo(goh)) (x), ((fog)oh)(x) and verify that fo(goh) = (fog)oh.		
CO3	L2	7	Draw the Hasse (POSET) diagram which represents positive divisors of 36.		
CO4	L3	6	Module – 4 In how many ways 5 number of a's, 4 number of b's and 3 number of c's, can be arranged so that all the identical letters are not in a single block.	2.7	
		1	2 of 3		

Г

				BCS	405A
	b.	Four persons P_1 , P_2 , P_3 , P_4 who arrive late for a dinner party find that only one chair at each of five tables T_1 , T_2 , T_3 , T_4 and T_5 is vacant. P_1 will not sit at T_1 or T_2 , P_2 will not sit at T_2 , P_3 will not sit at T_3 or T_4 and P_4 will not sit at T_4 or T_5 . Find the number of ways they can occupy the vacant chairs.	7	L2	CO4
	c.	Solve the recurrence relation $a_n = na_{n-1}$ where $n \ge 1$ and $a_0 = 1$.	7	L2	CO4
		OR			
Q.8	a.	In how many ways can the 26 letters of the English alphabet be permuted so that none of the patterns CAR, DOG, PUN or BYTE occurs?	6	L2	CO4
	b.	Find the rook polynomial for the 3 * 3 board by using the expansion formula.	7	L2	CO4
	c.	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	7	L2	CO4
		Madala 5			
Q.9	a.	Module – 5Define Group. Show that fourth roots of unity is an abelian group under \otimes .	6	L2	CO5
	b.	Define Klein 4 group. Verify $A = \{1, 3, 5, 7\}$ is a Klein 4 group under \otimes_{8} .	7	L2	CO5
	c.	State and prove Lagrange's theorem.	7	L2	CO5
	1	OR OR	1		
Q.10	а.	If H, K are subgroups of a group G, prove that $H \cap K$ is also a subgroup of G. Is $H \cup K$ a subgroup of G?	6	L2	CO5
	b.	Define cyclic group and show that $(G, *)$ whose multiplication table is as given below is cyclic. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L2	CO5
	c.	Prove that the only left coset of a subgroup H of a group G which is also a subgroup of G is H itself.	7	L2	CO5
		**** 3 of 3			-