BCS405C

Fourth Semester B.E./B.Tech. Degree Supplementary Examination,
June/July 2024

Optimization Technique

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		2. M: Marks, L: Bloom's level, C: Course outcomes.			
		Module – 1	M	L	С
Q.1	a.	If $f(x_1, x_2) = e^{x_1 x_2^2}$, where $x_1 = t \cos t$, $x_2 = t \sin t$. Find $\frac{df}{dt}$.	6	L2	CO1
_	b.	Obtain the Gradient of vector $f = \begin{bmatrix} e^{x_0x_1} & e^{x_2x_3} \end{bmatrix}$ with respect to the matrix	6	L2	CO1
		$\mathbf{x} = \begin{bmatrix} \mathbf{x}_0 & \mathbf{x}_1 \\ \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$	2		
	c.	Find the Taylor's series expansion of the function $f(x_1, x_2) = x_1^2 x_2 + 5x_1 e^{x_2}$	8	L2	CO1
		about the point $a = 1$, $b = 0$ upto second degree.			
		OR			
Q.2	a.	If $x, y \in \mathbb{R}^2$ and $y_1 = -2x_1 + x_2$, $y_2 = x_1 + x_2$. Show that the Jacobian	6	L2	CO1
		$ \det J = 3$			
	b.	Discuss the gradient of a vector with respect to matrix.	6	L2	CO1
	c.	Obtain Taylor's series expansion of $f(x,y) = x^2y + 3y - 2$ in terms of (x-1) and (y+2) upto second degree.	8	L2	CO1
		Module – 2			
Q.3	a.	If $f = x^2(x + y)$ where $C = x^2$ and $S = x + y$,	8	L2	CO2
		(i) Draw a computational graph			
		(ii) Find $\frac{\delta f}{\delta x}$ and $\frac{\delta f}{\delta y}$ at the point $x = 2$ and $y = 3$, using chain rule.			
		(ii) Find $\frac{1}{\delta x}$ and $\frac{1}{\delta y}$ at the point $x = 2$ and $y = 3$, using chain rule.			
		(iii) Construct computational graph in forward modes to show the results of (ii)			
	b.	Assume that the neurons have a sigmoid activation function. Perform a	12	L3	CO2
		forward pass and a backward pass on the network. Assume that the actual			
	que.	output of y is 0.5 and learning rate is 1. Perform another forward pass.			
	X	W13=01			
		71=0.35 4 H3 W35-2			
		0.8			
		W23. WIL 20.9			
		22-0.9 W23 VHy W45=0.9			
		Fig. Q3 (b)			
		1 of 2	-		*

		OR			
Q.4	a.	Construct a computational graph of the function,	8	L3	CO2
		$f(x) = \sqrt{x^2 + e^x} + \cos(x^2 + e^x)$. Also find $\frac{\delta f}{2}$ using automatic			
		δx			
	b.	differentiation. Assume that the neuron have a sigmoid activation function. Perform	12	L3	CO2
	υ.	forward pass and backward pass on the network. Assume that the actual	12	LU	002
		output of y is 1 and learning rate is 0.9. Perform another forward pass.			
		by=-0.4			
		21 = 1 W14=0.2			
		3=-0.3			
		76 = 0 (4) (1)			
		25:01	*		
		1-15 WS6=			
		1×3= 1+ w3y=0.2			
		(b: bios)			
		b5=0.2			
		Fig. Q4 (b)	,		
0.5		Module – 3		T 2	001
Q.5	a.	Describe Local and Global optima. List the differences between local and global optima.	6	L2	CO3
	b.	Minimize $f(x) = x_1^2 + x_2^2$, Subject to the condition $a_1x_1 + a_2x_2 = b$ using	6	L3	CO3
		Lagrangian multipliers.			
	c.	Define Hessian matrix, using the Hessian matrix classify the relative	8	L3	CO3
		extrema for the function, $f(x_1, x_2, x_3) = x_1 + 2x_3 + x_2x_3 - x_1^2 - x_2^2 - x_3^2$			
0.6		OR	1.0	1.0	000
Q.6	a.	Write 3-point interval search algorithm and also use it to find maximum of $f(x) = x(5\pi - x)$ on [0, 20] with $\varepsilon = 0.1$	10	L2	CO.
	b.	Minimize $f(x) = x(x - 1.5)$ over [0, 1] with the interval of uncertainty 0.25	10	L3	CO3
	В.	of the interval of uncertainty using Fibonacci method.	10	LS	
	A		1		
	19	Module – 4			
Q.7	a.	Write the Stochastic Gradient Descent algorithm.	6	L2	CO ₄
	b.	Find the extrema of the function $f(x) = 5\sin(2x) - 2x^2 - 4x$, with initial	8	L3	CO ²
		guess of -2, and $\varepsilon = 10^{-4}$ by Newton Raphson method.			-
	c.	Write the differences between Stochastic Gradient Descent and Mini Batch Gradient Descent methods.	6	L2	CO ²
		Gradient Descent methods.			
		OR			
Q.8	a.	Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 - 2x_1x_2 + x_2^2$, starting from the point	10	L3	CO
		$x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ using steepest gradient descent method.			
		¥			

	b.	Use Newton Raphson method to approximate the maximum of $f(x) = 2\sin x - \frac{x^2}{10}$ with initial guess of 2.5, $\varepsilon = 10^{-4}$	10	L3	CO4
	1	Module – 5	ı		
Q.9	a.	Write a note on Stochastic gradient descent with momentum.	6	L2	CO5
	b.	What is the best optimization algorithm for machine learning? Explain.	6	L3	CO5
	c.	Describe the saddle point problem in machine learning.	8	L2	CO5
		OR			
Q.10	a.	Write any 3 differences between convex optimization and non convex	6	L2	CO5
C		optimization.			
	b.	Explain Adagrad optimization strategy.	7	L2	CO5
	c.	Briefly explain the advantages of RMS prop over Adagrad.	7	L2	COS
	7				