

Max. Marks: 100

BEC302

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С	
Q.1	a.	Explain with a neat block diagram, the steps involved in realizing logic	06	L1	CO1	
		circuit from a problem statement.				
	b.	Identify the prime implicants and essential prime implicants of the	10	L2	CO1	
		following functions using Karnaugh map.				
		i) $f(a, b, c, d) = \Sigma m(0, 1, 2, 5, 6, 7, 8, 9, 10, 13, 14, 15)$				
		ii) $f(a, b, c, d) = \prod M(0, 2, 3, 8, 9, 10, 12, 14)$				
	c.	Express the equation in proper canonical form:	04	L2	CO1	
		G = f(w, x, y, z) = w'x + yz'				
	OR					
Q.2	a.	Simplify the following equation	12	L2	CO1	
		$S = f(w, x, y, z) = \Sigma(1, 3, 13, 15) + \Sigma d(8, 9, 10, 11)$				
		using Quine – McClusky technique.				
	b .	An electric motor powering a conveyor used to move material is to be	08	L3	CO1	
		turned on when one of two operators is in position. If material is present to				
		be moved and if the protective interlock switch is not open input and output				
		variables are to expressed in binary, that is, if operator 1 is in position and				
		the associated variable is a logical 0. The motor is running (on) if its output				
		control variable is a '1' and the motor is off if the output variable is 0. write				
		the truth table for the control problem and write the switching equation for the output that turns the motor ON.				
		Module – 2				
Q.3	a.	Explain the need for look ahead carry adders in reduction of propagation of $\frac{1}{2}$	12	L2	CO2	
2.5	а.	delay by considering 4-bit parallel look ahead carry adder and deriving	12		002	
		relevant equations at each stage.				
	b.	What are Decoders? Implement the following functions using a 3 to 8 line	08	L2	CO2	
		decoder:	00			
		i) $f_1(a, b, c) = \Sigma m(0, 4, 6, 7)$	1			
		ii) $f_2(a, b, c) = \prod M(1, 4, 5)$				
	OR					
Q.4	a.	With a neat block diagram, explain decimal adders. Write a truth table to	10	L2	CO2	
		show decimal SUM, Binary SUM and BCD SUMS. Also generate the				
		correction function from the truth table.				
	b.	Define encoders. Design a 8 to 3 line priority encoder with a neat truth	10	L4	CO2	
		table and write Boolean expressions for the outputs.				
		Module – 3				
Q.5	a.	Explain the operation of Master-Slave SR Flip-Flop with relevant waveforms.	10	L3	CO3	
	b.	Derive the characteristic equations for SR, JK, D and T flip-flops from their	10	L3	CO3	
		respective functional tables.	10	10	200	
L	1	respective functional motor.				

BEC302

registers 10	L2	CO2
		CO3
10	L4	CO3
operator 10	L4	CO4
gram and 10	L3	CO4
	_	1
10	L3	CO4
der with 06	L3	CO4
04	L3	CO4
		1
code and 10	L3	CO5
r a 3-bit 10	L3	CO5
a verilog 10	L3	C05
and write 10	L3	C05
	code and 10 or a 3-bit 10	04L3code and10L3or a 3-bit10L3a verilog10L3

* * * * *