GBCS SCHEME

JTE OF LECTURE AUSIN

BEC401

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2024 Electromagnetics Theory

BANTime: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	State and explain spherical coordinate system in detail.	5	L2	CO1
	b.	Four point charges each of 10 µC are placed in free space at the points (1, 0, 0),	8	L3	CO1
		(-1, 0, 0), (0, 1, 0) and (0, -1, 0) m respectively. Determine the force on a point			
		charge of 30 μC located at a point (0, 0, 1) m.			
	c.	Show that electric field intensity at a point, due to 'n' number of point charges,	7	L3	CO1
		is given by,			
		$E = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{Q_i}{R_i^2} a_{R_i} V/m$			
		$4\pi\epsilon_0 \sum_{i=1}^{2} R_i^2 R_i^2$			
		OR			
Q.2	a.	Define electric field intensity. Derive the expression for electric field intensity	9	L1	CO1
		due to infinite line charge.			
	b.	Given the two points $A(\rho = 4.4, \phi = -115^{\circ}, Z = 2)$ and $B(x = -3.1, y = 2.6, z = -115^{\circ}, z = 2)$	5	L3	CO1
		3), find			
		(i) The rectangular coordinate of point A			
		(ii) The cylindrical coordinate of point B			
	-	(iii) The distance between A and B.			
	c.	Find E at P(1, 5, 2) m in free space if a point charge of 6 μ C is located at	6	L3	CO ₁
		$(0, 0, 1)$, the uniform line charge density $\rho_L = 180 \text{nC/m}$ along x axis.			
0.0		Module – 2			
Q.3	a.	State and prove Gauss's law for point charge.	6	L3	CO ₂
	b.	Calculate the divergence of D at the point specified if,	9	L3	CO ₂
		(i) $D = (2xyz - y^2)a_x + (x^2z - 2xy)a_y + x^2ya_z$ C/m ² at P _A (2, 3, -1)			
		(ii) $D = 2\rho Z^2 \sin^2 \phi a_{\rho} + \rho Z^2 \sin 2\phi a_{\phi} + 2\rho^2 Z \sin^2 \phi a_{z} C/m^2$ at			
		$P_{\rm B}(\rho = 2, \phi = 110^{\circ}, Z = -1)$			
	di dana	(iii) $D = 2r \sin \theta \cos \phi a_r + r \cos \theta \cos \phi a_\theta - r \sin \phi a_\phi C/m^2$ at			
	1	$P_{C}(r = 1.5, \theta = 30^{\circ}, \phi = 50^{\circ})$			
	c.	Find electric field intensity at the point A(1, 2, -1) given the potential	5	L3	CO ₂
		$V = 3x^2y + 2y^2z + 3xyz$			
		OR			
			8	L3	CO2
Q.4	a.	Evaluate both sides of divergence theorem if $D = \frac{5r^2}{4} a_r C/m^2$ in spherical	0	Lo	CUZ
		4			81
		co-ordinate for the volume enclosed by $r = 4$ m and $\theta = \frac{\pi}{4}$ radians.		,	
		T			
		1 of 3			

	b.	Calculate the work done in moving a charge 4C from B(1, 0, 0) to A(0, 2, 0) along the path $y = 2 - zx$, $z = 0$ in the field (i)E = $5a_x$ V/m (ii) E = $5xa_x$ V/m	6	L3	CO2
	c.	(iii) E = 5xa _x +5ya _y V/m Electrical potential at an arbitrary point in free space is given as,	6	L3	CO2
		$V = 2(x+1)^2(y+2)^2(z+3)^2$ volt at a point P(2, -1, 4). Find (i) V (ii) E (iii) E (iv) D (v) ρ_V			
		Module – 3			
Q.5	a.	Evaluate the expression for capacitance of two uniformly charged parallel planes of infinite extent.	8	L2	CO3
	b.	Determine whether or not the potential equations satisfies Laplaces equation : (i) $V = 2x^2 - 4y^2 + z^2$ (ii) $V = \phi \cos \phi + z$ (iii) $V = r^2 \cos \phi + \theta$	5	L3	CO3
	c.	An assembly of two concentric spherical shell is considered. The inner spherical shell is at a distance of 0.1 m and is at a potential of 0 volts. The outer spherical shell is at a distance of 0.2 m and at a potential of 100 V. The medium between them is a free space. Find E and D using spherical co-ordinate system.	7	L3	CO3
		OR	_	1.0	001
Q.6	a.	State and explain Biot-Savarts law applicable to magnetic field.	6	L2	CO3
	b.	Evaluate both sides of the stokes theorem for the field, $H = 6xya_x - 3y^2a_y A/m$ and the rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, $Z = 0$. Let the positive direction of ds be a_z .	8	L3	CO3
	c.	Let $A = (3y - z)a_x + 2xza_y$ wb/m in a certain region of free space. (i) Show that $\nabla A = 0$ (ii) At P(2, -1, 3) find A, B, H and J.	6	L3	CO3
		Module –4	6	L1	CO4
Q.7	a.	Obtain the expression for magnetic force between differential current elements.	6	L3	CO4
	b.	The point charge $Q=18nC$ has a velocity of 5×10^6 m/s in the direction $a_V=0.60a_x+0.75a_y+0.30a_z$. Calculate the magnitude of force exerted on the charge by the field. (i) $B=-3a_x+4a_y+6a_z$ mT (ii) $E=-3a_x+4a_y+6a_z$ KV/m	0	L3	C04
	c.	The magnetization in a magnetic material for which $\chi_m = 8$ is given in a certain region as $150 \ Z^2 a_x \ A/m$. At $Z = 4$ cm, find the magnitude of, i) J_T ii) J iii) J_b .	8	L3	CO4
		0	13	COA	
Q.8	a	magnetic material.		L2	CO4
	b	Two differential current elements $I_1dl_1=10^{-4}a_zAm$ at $P_1(1,\ 0,\ 0)$ and $I_2dl_2=3\times 10^{-6}(-0.5a_x+0.4a_y+0.3a_z)$ Am at $P_2(2,\ 2,\ 2)$ are located in free space. Find the vector force exerted on, (i) I_2dl_2 by I_1dl_1 (ii) $I_1dl_{1\ by}I_2dl_2$		L3	004

	c.	The interface between two different regions is normal to one of three Cartesian axes. If $B_1 = \mu_0 (43.5a_x + 24.0a_z)$ and $B_2 = \mu_0 (22a_x + 24a_z)$. What is the ratio	6	L3	CO4
		$\tan \theta_1$			
		$\tan \theta_2$			
		Module – 5			WWW NAME OF
Q.9	a.	For the given medium $\varepsilon = 4 \times 10^{-9}$ F/m and $\sigma = 0$. Find K so that the following	6	L3	COS
2.5		pair of fields satisfies Maxwell's equation, $E = (20y - Kt)a_x V/m$,			
		$H = (y+2\times10^6 \text{ t})a_z \text{ A/m}.$			
			8	L3	CO
	b.	Within a certain region $\varepsilon = 10^{-11}$ F/m and $\mu = 10^{-5}$ H/m,			
		If B = $2 \times 10^{-4} \cos 10^5 t \sin 10^{-3} y T$;			
		(i) Find E (ii) Find total magnetic flux passing through the surface $x = 0$, $0 < y < 40$ m,			
		0 < z < 2m at $t = 1$ µsec.	6	L2	CO
	c.	State and explain pointing theorem.	U	102	
		OR			
Q.10	a.	Derive the modified Ampere's law by Maxwells for time varying fields.	5	L2	CC
Q.10	b.	and $\mu = \frac{ E }{ E } = \frac{\mu}{ E }$ and	7	L2	CC
		show that its value in free space is 377 Ω	8	L3	CO
	c.	A plane electromagnetic wave having a frequency of 10 MHz has an average pointing vector of 1 W/m ² . If medium is lossless with relative permeability of			
		2 and relative permittivity of 3 find			
		(i) The velocity of propagation.			
		(ii) Wavelength. (iii) Impedance of the medium			
		(iv) rms electric field.			