

- a. Using Laplace's equation, derive the expression for potential (V) and electric field strength E due to two concentric cylinders of infinite length. (06 Marks)
 - b. In spherical co-ordinates V = 750 volts at r = 25 cm and E = 825 a_r V/m at r = 75 cm. Determine the location of voltage reference if potential depends only on r. (07 Marks)
 c. State and prove Ampere's circuital law. (07 Marks)

1 of 2

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

- 6 a. Using Biot-Savart's law, derive the expression for magnetic field intensity "H" due to infinite long conductor. (06 Marks)
 - b. In spherical co-ordinates, V = 0 for r = 0.2 m and V = 200 volts for r = 3 m. Assuming free space between concentric spheres (Shells) find electric field intensity E and flux density D. (07 Marks)
 - c. Find magnetic field intensity H at the center of a square loop of sides equal to 10 m and carrying a current of 5 amp. (07 Marks)

Module-4

- 7 a. Derive the equation for magnetic force on a differential current element in a magnetic field. (06 Marks)
 - b. Calculate the force on a straight conductor of length 0.5 m carrying a current of 10 amp in the z-direction, where $\overline{B} = 5 \times 10^{-3} a_x$ Tesla and $B = 6 \times 10^{-3} a_y$ Tesla. (07 Marks)
 - c. A solenoid with air core has 2000 turns and a length of 700 mm. Core radius is 50 mm. Find self inductance. (07 Marks)

OR

- 8 a. Derive the equation for force between two parallel current carrying conductors. (06 Marks)
 b. Derive tangential and normal boundary conditions (magnetic) between two media of permeabilities μ₁ and μ₂. (07 Marks)
 - c. Find the inductance per unit length of a co-axial conductor with an inner radius of a = 4 mmand outer radius of b = 10 mm. Assume $\mu_r = 1$. (07 Marks)

Module-5

- 9 a. State the inconsistency of Ampere's law, for time varying fields. Derive Maxwell's equation to correct it.
 (06 Marks)
 - b. Derive general plane wave equation in terms of E, taking help of the Maxwell's equation (for free space). (07 Marks)
 - c. A plane wave travelling in positive z-direction in a lossless unbounded medium has permeability 5 times that of free space and a dielectric constant 3 times that of free space.
 - (i) Find phase velocity of the wave
 - (ii) If E has only x-component with amplitude 25 V/m, find amplitude and direction of H. (07 Marks)

OR

10a. Prove that conduction current and displacement current are equal.(06 Marks)b. State and explain Poynting theorem.(05 Marks)

c. Determine following parameters for a medium with $\epsilon_r = 4$, $\mu_r = 1$, $\sigma = 20 \times 10^{-2}$ S/m, f = 1 mHz.

- (i) Attenuation constant
- (ii) Phase shift constant
- (iii) Propagation constant
- (iv) Wavelength
- (v) Phase velocity
- (vi) Intrinsic impedance
- (vii) Skin depth (δ)

(09 Marks)

2 of 2