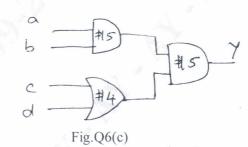


- 6 a. Derive Boolean expressions for 4-bit carry look ahead adder and also write the design module. (10 Marks)
 - b. Design a 2×1 MUX by writing logic circuit using bufifo and bufifi for the following delay specification.


	Min	typ	Max
Rise	3	4	5
Fall	6	7	9
Turn off	5	6	7

(04 Marks)

c. Write verilog module, test bench and waveform for the circuit shown in Fig.Q6(c). Assume t = 0, a = 0, b = 0, c = 0, d = 0

t = 5, a = 1, b = 1, c = 1, d = 1

t = 15, a = 0, c = 0.

(06 Marks)

Module-4

- 7 a. Differentiate always initial blocking and on blocking statement. (08 Marks)
 - b. Write a verilog program to call a function called calc parity which computes the parity of a 32 bit data [31 : 0] Data and display the parity. (06 Marks)
 - c. Explain the following control statements : i) case ii) for loop.

9

1

(06 Marks)

OR

- 8 a. Bring out differences between tasks and functions of verilog. (06 Marks)
 b. Write a verilog program for 1 × 4 demux considering 0, 1, x, z values for select inputs.
 - (08 Marks)
 - c. Explain the different event based timing control with example. (06 Marks)

Module-5

)	a.	Define the term logic synthesis. W	ith a neat	block	diagram.	Explain	computer	aided l	ogic
		synthesis process.						(08 Ma	arks)
	b.	Discuss conditional execution with a	an exampl	e.				(08 Ma	arks)
	C.	Bring out difference between \$strob	e and \$dis	play.				(04 Ma	arks)

OR

10	a.	What will the following statements translate to when run on a logic synthesis tool	?
		i) assign $y = (a \& b) + (c \& d)$ where a, b, c, d are 2-bit vectors	
		ii) if(s) out = i1 ;	
		else $out = i0$;	(06 Marks)
	b.	Explain force and release procedural assignments with example.	(08 Marks)
	C.	Discuss any 4 system tasks related to files.	(06 Marks)

2 of 2