

USN		and the second					
2 00000	. 3	7.3	1 1				

18EC644

Sixth Semester B.E. Degree Examination, June/July 2024 **Digital System Design Using Verilog**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain logic level evolution in real-world circuits and define the term Vol, Voh, VIL and
 - Explain simple methodology followed in IC industries with block diagram. b. (08 Marks)
 - Express the number (4.5)_d in floating point format with 5 bits of exponent and 12 bits of mantissa magnitude. (04 Marks)

OR

- Develop a datapath to perform a multiplication of two complex numbers. The real and 2 imaginary parts of the operands are represented as signed fixed-point numbers with 4 pre-binary-point and 12 post-binary-point bits. The real and imaginary parts of the products are similarly represented, but with 8 pre-binary-point and 24 post-binary points. (08 Marks)
 - Explain BCD code and 7-segment decoder and also write verilog model for that. (08 Marks)
 - Explain testbench and design under verification with proper diagram. (04 Marks)

Module-2

- Explain basics of memory concept with proper symbol and calculate how many address 3 lines and data lines are required for bellow memory size: i) 64KB ii) 512MB (08 Marks)
 - b. Design 64K × 8 composite memory using 16K × 8 component. Note: Use common data
 - input and output. (08 Marks) c. List out difference between SRAM and DRAM. (04 Marks)

OR

- a. Explain multi-port memory. List out advantages and disadvantages. Develop a verilog model of a dual-port. 4K × 16 - bit flow-through SSRAM. One port allows data to be written and read, while the other port only allows data to be read.
 - b. Explain error detection and correction and also compute the 12-bit ECC word corresponding to the 8-bit data word 01010101. (08 Marks)
 - Explain pipelined SSRAM.

- Module-3
- What is PLD? Explain the internal circuit of a PAL16L8 component. Specify the difference 5 between PAL16L8 and PAL16R8. (08 Marks)
 - b. Explain output logic macrocell of a GAL22V10 component. Design priority encoder that has 08 inputs. The design is to be implemented in GAL22V10 component. (08 Marks)
 - Explain application specific integrated circuits.

(04 Marks)

(04 Marks)

OR

6	a.	Explain Xilinx Spartan-II FPGA logic block.	(08 Marks)
	b.	Explain packaging and circuit boards.	(08 Marks)
	C.	Explain differential signaling.	(04 Marks)
-		Module-4	
7	a.	Explain the serial transmission of 64 bit data with suitable timing diagram.	(08 Marks)
	b.	Explain Flash ADC and successive approximation ADC with diagram.	(08 Marks)
	C.	Explain Firewire serial interface standards.	(04 Marks)
		O.D.	
2000		OR	
8	a.	Explain polling and interrupts.	(08 Marks)
	b.	Explain Gumnut I/O write and read operations with timing diagram.	(08 Marks)
	c.	What are the purpose of control register and status register in I/O controller?	(04 Marks)
		Module-5	
9	a.	Explain prototypical design flow, including hardware/software co-design.	(10 Marks)
	b.	What is design optimization? Explain optimization of area and power.	(10 Marks)
		OR	
10	a.	Explain Built-In-Self-Test (BIST) technique.	(10 Marks)
	b.	Briefly explain following:	
		i) Fault models and fault simulation.	
		ii) Scan design and boundary scan.	(10 Marks)