BME304

Third Semester B.E./B.Tech Degree Supplementary Examination, June/July 2024

GBGS SCHEME

Basic Thermodynamics

Time: 3 hrs.

USN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks, L: Bloom's level, C: Course outcomes.
3. Used of thermodynamic data hand book is permitted.

		Module – 1	\bigtriangledown	Μ	L	С
Q.1	a.	Explain Zeroth law of thermodynamics.		4	L2	CO1
		No. Contraction of the second s				
	b.	Define heat and work in thermodynamics. S	how that work is a path	8	L1	CO1
		function.				
		<u> </u>				
	c.	The temperature 'T' on thermometric scale is do	1 I V	8	L3	CO1
		'P' by the relation $T = a \log_e P + b$, where a	and b are constants. The			
		temperature at ice point and steam point are			i in	
		Instrument gives values of 'P' 1.86 and 6.81	-			
		respectively. Evaluate temperature correspondin	g to a reading of $P = 2.5$.			
		OR	CV AL			
Q.2	a.	Derive an expression for displacement work for :		10	L2	CO1
		i) Isothermal process				
		ii) Isentropic process.	× 1			
	-	3				0.01
	b.	A cylinder contains 0.5m ³ of gas at 1 bar and 90		10	L3	CO1
		a volume of 0.125 m ³ . The final pressure being 6	bar. Find :	2		
		i) The mass of the gas				
		ii) Value of 'n'				
		iii) The heat transferred				
		iv) Internal energy.				
		Module – 2	· · · · · · · · · · · · · · · · · · ·			
0.3	0	State the first law of thermodynamics applied	to evolic process and non	6	L1	CO2
Q.3	a.	cyclic process.	to cyclic process and non	0		02
		cyclic process.	x			
	b.	Show that internal energy is a property of system	1	6	L2	CO2
	D.	Show that internal energy is a property of system		U		02
	c.	A closed system undergoes a cycle. The energy t	ransfer are as obtained .	8	L3	CO2
		i) Complete the table	function and as obtained .	0	1.5	002
		ii) Determine rate of work in KW.				
		Process Q(kJ/min) W(kJ/min)	DE(kJ/min)			2
		AB 400 150			· · ·	
		BC 200 -	300			
		CD -200 -	_			
		DA 0 75	_			
			L			
1 of 3					1	1

BME304

		OR	6	X A	000	
Q.4	a.	Starting the assumptions, derive steady flow energy equation.	6	L2	CO2	
	b.	 A nozzle is a device for increasing the velocity of steadily flowing steam. Enthalpy of the fluid at inlet is 3000kJ/kg and velocity is 60m/s. Enthalpy at discharge end is 2762 kJ/kg. The nozzle is horizontal and there is negligible heat loss from it : i) Find velocity at exit of nozzle ii) If inlet area is 0.1m² and specific volume is 0.187 m³/kg, find mass flow rate. iii) If specific volume at exit is 0.498m³/kg find diameter at exit of nozzle. 	8	L3	CO2	
	c.	The power capacity of a system is 3000KW for the following data determine the fluid flow rate in kg/hour. The heat rejection from fluid = 100 kJ/s Inlet velocity = 300 m/s Inlet pressure = 600 KPa Inlet internal energy = 2000 kJ/kg	6	L3	CO2	
		Inlet volume $= 0.2 \text{ m}^3/\text{kg}$ Outlet velocity $= 120 \text{ m/s}$ Outlet pressure $= 150 \text{ Kpa}$	1			
		Outlet internal energy = 1500 kJ/kg Final volume = $1.2 \text{ m}^3/\text{kg}$ The fluid enters and leaves the system at same elevation.				
		Module – 3				
Q.5	a.	Give the Kelvin plank and Clausius statements of second law of thermodynamics and prove their equivalence.	10	L1	CO	
	b.	Explain PMMK – 1 and PMMK – 2.	4	L1	CO	
	с.	A series combination of two Carnot engines operate between temperature of 180°C and 20°C. Calculate the intermediate temperature, if engine produces : i) Equal amount of work ii) Engines having same efficiency.	6	L3	CO	
0 (OR				
Q.6	a.	State and prove Clausius inequality.	8	L1	CO	
	b.	Show that entropy is a property of a system.	6	L2	CO	
	c.	5 kg of copper block of 200°C is dropped to an insulated tank with 100kg of oil at 30°C. Find the increase in entropy of the universe. Take $C_p(\text{copper}) = 0.4 \text{kJ/kg-k}$, $C_p(\text{oil}) = 2.1 \text{kJ/kg-k}$.	6	L3	CO	
		2 of 3	1	1		

BME304

		Module – 4			
Q.7	a.	With $T - S$ diagram briefly explain the available energy and unavailable energy.	6	L1	CO4
	b.	Obtain an expression for maximum work available in steady flow system.	6	L2	CO4
	c.	Define the following with respect to the pure substance : i) Latent heat of vapourisation ii) Sensible heat iii) Saturation temperature iv) Triple point v) Dryness fraction vi) Wet steam.	8	L1	CO4
		OR			
Q.8	a.	With a neat sketch explain the working of a separating and throttling calorimeter.	10	L1	CO4
s	b.	In a test to find the quality of the steam in a pipe using a combined separating and throttling calorimeter, the following data was obtained : Pressure of steam in steam mains = 14 bar Pressure of steam after throttling = 1.19 bar Temperature after throttling = 120°C Water collected in separator = 0.45 kg Steam condensed after throttling = 6.75 kg Describe the condition of the steam in the mains. Take SP heat of superheated steam as 2.1 kJ/kg-k.	10	L3	CO4
		Module – 5			
Q.9	a.	Clearly distinguish between ideal and real gases.	6	L1	COS
	b.	Explain briefly Dalton's law and Amagat's law.	6	L1	COS
	c.	Derive an expression for specific heat at constant pressure and constant volume for mixture of gases.	8	L2	COS
		OR			
Q.10	a.	Explain reduced properties and compressibility chart.	6	L1	CO
	b.	Write Maxwell relations and explain the terms involved.	6	L1	CO
	c.	Determine the pressure exerted by carbon-dioxide in a container of 1.5m ³ capacity when it contains 5kg at 27°c using. i) Ideal gas equation ii) Vander walls equation Take a = 364.3 kN/m ⁴ /kg mol ² b = 0.0427 m ³ /kg mol.	8	L3	CO
					i

3 of 3

* *