

BME401

		Module – 3			
Q.5	a.	Draw the comparisons between Carnot and Rankine vapour power cycles.	06	L2	CO3
	b.	With a sketch explain effect of boiler pressure and condenser pressure on	06	L2	CO3
		the Rankine cycle performance.			
	c.	A steam power plant operating on Rankine cycle, receives steam at	08	L3	CO3
		3.5 MPa and 350°C. It is exhausted at condenser at 0.1 bar. Calculate:			
		(i) Heat supplied per kg of steam generated in boiler.			
		(ii) Quality of steam entering the condenser			
		(iii) Rankine cycle efficiency			
		(iv) Specific steam consumption			
		OR	II		
Q.6	a.	Sketch the flow diagram and corresponding T-S diagram of a reheat vapour	08	L2	CO3
		power cycle and derive expression for reheat cycle efficiency.	00		
	b.	In a single feed water heater, regenerative cycle, the steam enters the	12	L3	CO3
	N •	turbine at a pressure of 30 bar and 400°C. The exhaust pressure of the	12	LU	
		steam is 0.1 bar. The feed water heater is open type which operates at a			
		pressure of 5 bar, find the thermal efficiency of the cycle and specific steam			
		consumption. Show the flow diagram; the regenerative cycle on h-s and			
		T-S diagram.			
		Module – 4	~		
Q. 7	a.	Define refrigerant. What are the desirable properties of good refrigerant?	06	L2	CO4
	b.	Explain the effect of superheating and sub-cooling with aid of T-S diagram	06	L3	CO4
		and p-h diagrams.		20	
	c.	A 5 ton R-12 refrigeration plant has saturated suction temperature of -5° C.	08	L3	COI
		The condensation take place of 32°C. Assuming isentropic compression,		20	
		find: (i) COP of the plant (ii) Mass flow rate of refrigerant			
		(iii) Power required to run compressor in kW			
		Take following properties of R-12.			
		PressureTemperature h_f kJ/kg h_g kJ/kg S_g kJ/kg			
		7.85 32° C 130.5 264.5 1.542			
		Take C_p super heated vapour = 0.615 kJ/kg-K			
0.0		OR	10	1.2	00
Q.8	a.	Explain the following processes by showing them as the psychrometric	10	L3	CO4
		chart:			
		(i) Sensible cooling			
		(ii) Humidification			
		(iii) Cooling and dehumidification			
		(iv) Heating and humidifying			
	-	(v) Adiabatic mixing of two streams of air	10	TA	60
	b.	For a hall to be air conditional, outdoor conditions = 40° C DBT, 20° C		L3	CO
		WBT, required conditions = 20° C DBT and 60° RH. Seating capacity of			
		the hall = 1500, amount of outdoor air supplied = $0.3 \text{ m}^3/\text{min/person}$. If			
		required conditions are achieved first by adiabatic humidification and then			
		by cooling. Estimate:			
		(i) Capacity of cooling coil in TR (ii) Capacity of humidifier in kg/hr.			
		A.			
		2 of 3			

(1990)

				BM	E401
		Module – 5			
Q.9	a.	Derive an expression for minimum work input by two stage compressor	10	L2	CO5
		with intercooling between the two stages.			
	b.	A single stage, double acting air compressor, required to deliver 14 m ³ of	10	L3	CO5
		air per minute measured at 1.013 bar and 15°C. The delivery pressure is 7 has and gread is 200 mm. Take the abarrance values on $50'$ of great			
		7 bar and speed is 300 rpm. Take the clearance volume as 5% of swept volume with compression and expansion index $n = 1.3$. Calculate:			
		(i) The swept volume of the cylinder			
		(ii) Delivery temperature			
		(iii) Indicated power			
Q.10	a.	OR Explain with neat sketch convergent nozzle and convergent-divergent	06	L2	COS
Q.10	a.	nozzle.	00	LZ	COS
	b.	Derive an expression for condition of maximum discharge through a	06	L3	COS
		nozzle.	-		
	c.	Dry saturated steam enters a steam nozzle at a pressure of 15 bar and is	08	L3	COS
		discharged at a pressure of 2 bar. If dryness fraction of steam is 0.96 dry,			
		what will be final velocity of stem? Neglect initial velocity of steam. If			
		15% of heat drop is lost in friction, find the percentage reduction in final velocity.			
		veneerly.			

		At At A A A A A A A A A A A A A A A A A			
		At A A A A A A A A A A A A A A A A A A			
					т.
					τ. Τ
					The second se