


Max. Marks: 10

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes. 3. Draw the sketches wherever necessary.

|        | Module – 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | Μ  | L  | С   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----|
| Q.1 a. | Define the following fluid properties:<br>i) Mass Density<br>ii) Specific Gravity<br>iii) Surface tension.                                                                                                                                                                                                                                                                                                                                    | 6  | L2 | CO1 |
| b      | State and prove the Pascal's law for the intensity of pressure in a static fluid.                                                                                                                                                                                                                                                                                                                                                             | 6  | L2 | CO1 |
| c.     | between a square plate of size $0.8m \times 0.8m$ and an inclined plane with angle of inclination 30°. The weight of the square plate is 300 N and it slides down the inclined plane with a uniform velocity of 0.3 m/s. The thickness of oil film is 1.5 mm. Also, determine the kinematic viscosity of oil if the specific gravity of oil is 0.85.                                                                                          | 8  | L3 | COI |
|        | OR                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |     |
| Q.2 a. | Derive an expression for "Total Pressure" and "Center of Pressure" acting<br>on vertical plane surface submerged in a static liquid.                                                                                                                                                                                                                                                                                                          | 10 | L2 | CO  |
| b      | to two pipes A and B. Water flows through pipe A and a liquid of specific gravity 0.9 flows through pipe B. Pipe B is 1.5 m above the level of pipe A. Meniscus of mercury in the left limb connected to A is 3m below the center of pipe A and Meniscus on the right limb connected to pipe B is 10 cm above that in the left limb. If the pressure in pipe A is 10 bar, determine the pressure in pipe B. Sketch the manometer arrangement. | 10 | L3 | CO  |
|        | Module – 2                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    | 1   |
| Q.3 a  | <ul> <li>Write a note on the following types of fluid flow:</li> <li>i) Steady and unsteady flow</li> <li>ii) Uniform and Non uniform flow</li> <li>iii) Laminar and turbulent flow.</li> </ul>                                                                                                                                                                                                                                               | б  | L2 | CO  |
| b      | Obtain an expression for continuity equation in Cartesian coordinate system for a 3-dimensional fluid flow.                                                                                                                                                                                                                                                                                                                                   | 8  | L2 | CO  |
| c.     | A fluid flow field is given by $V = x^2yi + y^2zj - (2xyz + yz^2)k$ . Prove that it<br>is a case of possible steady incompressible fluid flow. Calculate the<br>velocity of the fluid at the print (2, 1, 3).                                                                                                                                                                                                                                 | 6  | L3 | CO  |
|        | velocity of the finit at the print $(2, 1, 3)$ .                                                                                                                                                                                                                                                                                                                                                                                              |    |    |     |

|     |    | BME4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |    |     |
|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----|
|     |    | OP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |     |
| Q.4 | a. | OR<br>Derive an expression for the velocity distribution and shear stress<br>distribution for the viscous flow through a circular pipe. Show the velocity<br>and shear-stress distribution across the circular pipe.                                                                                                                                                                                                                                                                                                                         | 10       | L2 | CO2 |
|     | b. | Calculate :<br>i) Pressure gradient along flow<br>ii) The average velocity<br>iii) The discharge for an oil of.<br>Viscosity 0.02 Ns/m <sup>2</sup> flowing between two stationary parallel plates 1 m<br>wide maintained 10 mm apart. The velocity midway between the plates is<br>2m/s.                                                                                                                                                                                                                                                    | 10       | L3 | CO2 |
|     |    | Module – 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10       |    | 000 |
| Q.5 | а. | Derive the Euler's equation of motion for the fluid flowing along a stream line. Obtain Bernoullis equation of motion and mention the assumptions made.                                                                                                                                                                                                                                                                                                                                                                                      | 10       | L2 | CO3 |
|     | b. | A 30 cm $\times$ 15 cm venturimeter is provided in a vertical pipe line carrying<br>oil of specific gravity 0.9, the flow being upwards. The difference in<br>elevation of the throat section and entrance section of the ventirumeter is<br>30 cm. The differential U-tube mercury manometer shows a deflection of<br>25 cm. Determine: i) The discharge of oil ii) The pressure difference<br>between the entrance section and the throat section. Take C <sub>d</sub> of<br>venturimeter as 0.98 and specific gravity of mercury as 13.6. | 10       | L3 | CO3 |
|     |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |     |
| Q.6 | a. | Derive the Daray-Weisbach equation for the loss of head due to friction in a pipe.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10       | L2 | CO3 |
|     | b. | <ul> <li>The rate of flow of water through a horizontal pipe is 0.25 m<sup>3</sup>/s. The diameter of the pipe which is 200 mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is 11.772 N/cm<sup>2</sup>. Determine:</li> <li>i) Loss of head due to sudden enlargement.</li> <li>ii) Pressure intensity in the large pipe.</li> <li>iii) Power lost due to enlargement.</li> </ul>                                                                                                                              | 10       | L3 | CO3 |
|     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 34<br> |    |     |
| ~ - |    | Module – 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |     |
| Q.7 | a. | Explain the following terms:<br>i) Drag ii) Lift iii) Friction drag iv) Pressure drag.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8        | L2 | CO4 |
|     | b. | <ul><li>What do you mean by boundary layer? Explain the following with a boundary layer diagram.</li><li>i) Boundary layer thickness</li><li>ii) Displacement thickness.</li></ul>                                                                                                                                                                                                                                                                                                                                                           | 6        | L2 | CO4 |
|     | c. | A man weighing 90 kgf descends to the ground from an aeroplane with the help of a parachute against the resistance of air. The velocity with which the parachute which is hemispherical in shape, come down is 20 m/s. Find the diameter of the parachute. Assume $C_b = 0.5$ and density of air = 1.25 kg/m <sup>3</sup> .                                                                                                                                                                                                                  | 6        | L3 | CO4 |
|     |    | 2 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | 1  | 1   |

A

|      |    |                                                                                                                                                                                                                                                                            |    | BM | E403 |
|------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------|
| Q.8  | а. | OR<br>Write the dimensions of the following quantities:<br>i) Kinematic viscosity<br>ii) Dynamic viscosity<br>iii) Discharge/Rate of flow<br>iv) Specific weight.                                                                                                          | 4  | L2 | CO   |
|      | b. | Explain the following dimensionless numbers:<br>i) Reynold's number<br>ii) Mach number<br>iii) Weber number.                                                                                                                                                               | 6  | L2 | CO   |
|      | c. | Using Buckingham's $\pi$ -theorem, prove that the frictional torque T of a disc<br>of diameter D rotating at a speed N in a fluid of viscosity $\mu$ and density $\rho$ in<br>a turbulent flow is given by.<br>$T = D^5 N^2 \rho \phi \left[\frac{\mu}{D^2 N \rho}\right]$ | 10 | L3 | CO   |
| Q.9  | a. | Module – 5<br>Derive an expression for the velocity of sound wave in terms of change of pressure and change of density.                                                                                                                                                    | 8  | L2 | CO   |
|      | b. | Define Mach number. Explain its significance in compressible fluid flow.                                                                                                                                                                                                   | 6  | L2 | CO   |
|      | c. | Calculate the speed of the aeroplane flying at an height of 15 km where the temperature is -50°C. The speed of the plane is corresponding to mach number equal to 2. Assume $K = 1.4$ and $R = 287$ J/kg K.                                                                | 6  | L3 | CO   |
| Q.10 | a. | OR<br>Derive an expression for velocity of sound in compressible fluid medium<br>undergoing.<br>i) An isothermal processes<br>ii) An adiabatic process.                                                                                                                    | 8  | L2 | CO   |
|      | b. | Mention the advantages and disadvantages of CFD.                                                                                                                                                                                                                           | 6  | L2 | CO   |
|      | c. | Discuss the applications of CFD in various domain of industry and academia.                                                                                                                                                                                                | 6  | L2 | CO   |
|      |    |                                                                                                                                                                                                                                                                            |    | ,  | ~    |
|      |    | 3 of 3                                                                                                                                                                                                                                                                     |    |    |      |