Third Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

CBCS SCHEME

Computer Organization and Architecture

Time: 3 hrs.

USN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С		
Q.1	a.	Explain with blockdiagram basic functional units of a computer.	08	L2	CO1		
	b.	Write the basic performance equation. Explain the role of each of the	05	L2	CO1		
		parameter in the equation.					
	c.	Explain Big-endian and Little-endian method with neat diagram.	07	L2	CO1		
OR							
Q.2	a.	Draw and explain the connection between memory and processor with the	08	L2	CO1		
		respective registers.					
	b.	What is straight line sequencing? Explain with example program.	05	L2	CO1		
	c.	Write a program that can evaluate the expression $A \times B + C \times D$ in a single	07	L2	CO1		
		accumulator processor. Assume that the processor has load, store, multiply,		-			
		and add instruction and that all values fit in the accumulator.					
		Module – 2			*		
Q.3	a.	Explain various addressing modes with example.	08	L2	CO2		
	b.	What is parameter passing? How are parameters passing? How are	06	L2	CO2		
		parameters passed to sub routine using registers?					
	c.	Explain the assembler directives concept with example program.	06	L2	CO2		
OR							
Q.4	a.	Explain logical shift and rotate operations with examples.	08	L2	CO2		
	b.	What is stack? Write a routine for safe push operation and safe pop	06	L1	CO2		
		operation.					
	c.	Find the effective address of the memory operand in each of the following	06	L3	CO2		
		instruction:					
		(a)Load 20(R_1), R_5	6				
		@Move #3000, R ₅					
		$@Add - (R_2), R_5$					
		where $R_1 = 1200$ and $R_2 = 4600$					
Module – 3							
Q.5	a.	What is memory mapped I/O? Explain I/O interface for an input device	06	L1	CO2		
		with a neat diagram.					
	b.	Discuss the different schemes available to enable and disable interrupts.	06	L1	CO2		
	c.	What is interrupt nesting? Explain with a neat diagram, the implementation	08	L1	CO2		
		of interrupt priority using individual interrupt request and acknowledge					
		lines.					
		OR					
Q.6	a.	What is DMA? With a neat diagram, discuss how DMA controller registers	08	L1	CO2		
		accessed by the processor to initiate transfer operations.					
	b.	Explain how simultaneous interrupt request from several I/O devices will	06	L2	CO2		
		be handled by a processor through a single INTR line.					
	c.	Define bus arbitration. Explain centralized bus arbitration.	06	L1	CO2		
		· · · · · · · · · · · · · · · · · · ·					
		1 of 2					

BMT304

		Module – 4			
Q.7	a.	Explain the organization of 16×8 memory chip.	10	L2	CO3
	b.	Define ROM. List and explain various types of ROMs.	10	L1	CO3
		OR			
Q.8	a.	What is virtual memory? Explain virtual memory organization with a neat diagram.	10	L2	CO3
	b.	Explain the internal organization of a $2M \times 8$ asynchronous DRAM chip.	10	L2	CO3
		Module – 5			
Q.9	a.	Draw the diagram of single bus organization of the data path inside a processor and explain the steps to execute an instruction.	10	L2	CO3
	b.	Explain the hardwired control unit organization in a processing unit.	10	L2	CO3
		OR			
Q.10	a.	Explain the micro-programmed control unit organization in a processing unit.	10	L2	CO3
	b.	Draw and explain multiple bus organization.	10	L2	CO3