

BMT306B

Third Semester B.E./B.Tech. Degree Examination, June/July 2024

Signals and Systems

Time: 3 hrs.

LIBSNY

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	I	C
Q.1	a.	Define signal and system. Explain the classification of signals with an	10	L2	CO1
V.1	a.	example.	10		COI
	b.	Two signals x(t) and g(t) are shown in Fig Q1(b) express x(t) signals	10	L3	CO1
		interms of g(t)			
		x(t) gu)			
		4			
		3			
		2 : -			
		1 11			
		1237 -			
		Fig Q1(b)			
		OR			
0.0	1		10	т 2	001
Q.2	a.	Explain all basic elementary signals with mathematical representation and waveform.	10	L3	CO1
	b.	Determine whether the following systems one linear, time-invariant, causal,	10	L3	CO1
		BIBO stable and memory i) $y(n) = 0.5^n x(n)$ ii) $y(n) = x(\frac{n}{2})$			
		Module – 2			
Q.3	a.	Obtain the convolution of two continuous time signals	10	L3	CO
		$x(t) = 1$ for $0 \le t \le 1$ $h(t) = t$ for $0 \le t \le 2$			
		0 otherwise = 0 otherwise	:		
	b.	Two discrete time LTI system are connected in cascade determine the unit	10	L3	CO ₂
		sample response of the connection $h_1 = (1/2)^n u(n) h_2(n) = (1/4)^n u(n)$			
		II (1/2) u(II) II2(II) (1/4) u(II)			
		ÓR			
Q.4	a.	Determine the convolution of two sequences $x(n) = \{1, 2, 2, 3\}$ and	10	L3	CO2
	7	$h(n) = \{2, -1, 3\}$ Define the approximation for a variable to the lattice provides	10	12	CO
	b.	Derive the expression for convolution sum formula.	10	L3	CO2
		Module – 3			
Q.5	a.	Explain 3 important properties of convolutes integral.	10	L3	CO3
	b.	Evaluate the total response of as LTI system described by the differential	10	L3	CO3
		equation given below			
		$y''(t) + 5y'(t) + 6y(t) = 2e^{-t}u(t)$; $y(0) = 0$, $y'(0) = 1$.			

		OR			
Q.6	a.	Draw direct form – and direct form – II implementation for the following	10	L3	CO3
		difference equation $y(n) + \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = 2x(n) + 3x(n-1)$			
	b.	Find the total response of the LTI system described by the differences	10	L3	CO3
		equation given below:			
		y(n) + 4y(n-1) + 3y(n-2) = u(n); $y(-1) = 0$; $y(-2) = 1$.			
		Module – 4			
Q.7	a.	Explain the following properties of Fourier series with proof.	10	L3	CO4
		i) Linearity ii) Translation iii) Frequency shift			
	b.	Find the complex Fourier coefficient for the periodic waveform x(t) shown	10	L3	CO4
		in Fig Q7(b). Also draw the amplitude and phase spectra			
		1 xit)			
					W.
		Fig Q7(b)			
		Fig Q7(b)			4
		OR			
Q.8	a.	Find the complex Fourier coefficient for x(t) given below:	10	L3	CO4
2.0					00.
		i) $x(t) = \cos\left(\frac{2\pi}{3}t\right) + 2\cos\left(\frac{5\pi}{3}t\right)$ ii) $x(t) = \sin(\pi t) $			
			10	1.2	004
	b.	Obtain the modulation or multiplications theorem of Fourier series.	10	L3	CO4
		Modulo 50			
0.0		Module – 5 Explain the following properties of Fouerier Transform with proof.	10	L3	COF
Q.9	a.	i) Time differentiation ii) Time Reversal iii) Scaling.	10	L3	CO5
	b.	Find the Fourior transform of the following signals.	10	L3	CO5
	D.	i) $x(t) = u(-t)$ ii) $x(t) = e^{at}u(t)$	10	LIS	COS
		$1) \lambda(t) - u(t)$			
		OR		h.	
Q.10	a.	Find to Fourier Transform of the signal $x(t) = \delta(t+0.5) - \delta(t-0.5)$. Also	10	L3	CO5
A.110	34.0	plot the magnitude and phase spectra.	-0		
		piot the magnitude and phase spectra.			
	b.	Using the properties of Fourier transform, find the Fourier transform of the	10	L3	CO5
	D.	following signal	10	LIJ	003
		i) $x(t) = \sin(\pi t) e^{-2t} u(t)$ ii) $x(t) = \frac{d}{dt} [te^{-2t} \sin t u(t)]$			
		at at			

* * * * *