

| USN                       |  |  |   |  |  |  | BMT403 |
|---------------------------|--|--|---|--|--|--|--------|
| The state of the state of |  |  | 1 |  |  |  |        |

## **Hydraulics and Pneumatics**

June/July 2024

Fourth Semester B.E./B.Tech. Degree Supplementary Examination,

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

|        |        | Module – 1                                                                                                                                                                       | M  | L    | C               |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-----------------|
| Q.1    | a.     | Explain with a neat sketch structure of hydraulic control system.                                                                                                                | 10 | L1   | CO1             |
|        | b.     | Calculate the volumetric displacement, theoretical flow rate, actual flow                                                                                                        | 10 | L3   | CO1             |
|        |        | rate, theoretical torque and theoretical power of a gear pump operating at                                                                                                       |    |      |                 |
|        |        | 70 bar. It has a outer diameter of 75 mm, internal diameter of 50 mm and                                                                                                         |    |      |                 |
|        |        | width of 25 mm. The volumetric efficiency 90% at rated pressure and given                                                                                                        |    |      |                 |
|        |        | pump speed is 1000 rpm.                                                                                                                                                          |    |      |                 |
|        |        | OR                                                                                                                                                                               |    |      |                 |
| Q.2    | a.     | Explain with schematic diagram the air filter used in a FRL unit of a                                                                                                            | 10 | L1   | CO1             |
| Q.2    | a.     | pneumatic system.                                                                                                                                                                | 10 | 171  | COI             |
|        |        | produitable bystein.                                                                                                                                                             | -  |      |                 |
|        | b.     | Determine the theoretical flowrate, overall efficiency, volumetric                                                                                                               | 10 | L3   | CO1             |
|        |        | efficiency, mechanical efficiency and theorical torque of a hydraulic pump                                                                                                       |    |      |                 |
|        |        | which has a displacement volume of 0.00012 m <sup>3</sup> /rev. Its actual flow rate is                                                                                          |    |      |                 |
|        |        | 0.0015 m <sup>3</sup> /sec at 900 rpm and 75 bar. The actual torque input by the prime                                                                                           |    |      |                 |
|        |        | mover to the pump is 150 N-m.                                                                                                                                                    |    |      |                 |
|        |        | Module – 2                                                                                                                                                                       |    |      |                 |
| Q.3 a. | a.     | Illustrate the working of unbalanced vane motor.                                                                                                                                 | 10 | L2   | CO2             |
| Q.5    |        | mustrate the working of discutations value in otor.                                                                                                                              |    |      | 002             |
|        | b.     | Classify the following valves into direction valve, pressure control valve                                                                                                       | 10 | L2   | CO2             |
|        |        | and flow control valve and explain with neat constructional diagram the                                                                                                          |    |      |                 |
|        |        | working of Direct Acting Pressure Relief Valve.                                                                                                                                  |    |      |                 |
|        |        | i) 4/3 way valve ii) unloading valve iii) Pressure compensated valve.                                                                                                            |    |      |                 |
|        |        | OR                                                                                                                                                                               |    |      |                 |
| Q.4    | a.     | Illustrate the working of Swash plate type piston motor.                                                                                                                         | 10 | L2   | CO2             |
| Ų.Ŧ    | a.     | indistrate the working of Swash plate type piston motor.                                                                                                                         | 10 |      | COZ             |
|        | b.     | Explain with a neat sketch the construction and working of a double pilot                                                                                                        | 10 | L2   | CO <sub>2</sub> |
|        | 100.00 | operated direction control valve.                                                                                                                                                |    |      |                 |
|        |        |                                                                                                                                                                                  |    |      |                 |
|        |        | Module – 3                                                                                                                                                                       |    |      |                 |
| Q.5    | a.     | Develop a double acting cylinder hooked up in a regenerative circuit using                                                                                                       | 10 | L3   | CO3             |
|        |        | a 3/2 DCV. The relief valve setting is 70 bar. The piston area is 0.016m <sup>2</sup>                                                                                            |    |      |                 |
|        |        | and rod area is 0.0045 m <sup>2</sup> . If the pump flow is 0.0013 m <sup>2</sup> /s, determine the speed and load (force) carrying capacity required for a successful extending |    |      |                 |
|        |        | stroke and refracting stroke.                                                                                                                                                    |    |      |                 |
|        |        | Stroke and fortabling stroke.                                                                                                                                                    |    |      |                 |
|        |        | 1 of 2                                                                                                                                                                           |    | 1    | 1               |
|        |        |                                                                                                                                                                                  |    |      |                 |
|        |        |                                                                                                                                                                                  |    | **** |                 |

|      |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | BM | T403 |
|------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------|
|      | b. | Classify filters and schematically illustrate the common location of it in hydraulic system.                                                                                                                                                                                                                                                                                                                                                                                                            | 10 | L1 | CO3  |
|      |    | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |      |
| Q.6  | a. | Analyze the following cases and illustrate hydraulic circuits involving accumulator as a solution for respective cases.  Case 1: To supplement the pump flow during intermittent periods whenever the flow demand is higher.  Case 2: Fluid supply is not available due to power failure and the cylinder has to be retraited condition.  Case 3: Internal/External leakage, when system is pressurized but not in operation.  Case 4: Emergency closure of pressure line resulting in waste hammering. | 10 | L3 | CO3  |
|      | b. | Illustrate the constructional features of standard hydraulic reservoir.                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 | L1 | CO3  |
|      |    | Module – 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    |      |
| Q.7  | a. | Illustrate structure of pneumatic control system.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | L2 | CO1  |
|      | b. | Develop a pneumatic circuit to control the speed of a double acting cylinder by suitable air throttling method. Justify the method.                                                                                                                                                                                                                                                                                                                                                                     | 10 | L3 | CO4  |
|      |    | OR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |      |
| Q.8  | a. | Classify pneumatic linear actuator and illustrate various Single Acting Cylinders.                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 | L2 | CO4  |
|      | b. | Illustrate a Pneumatic circuit to Indirectly Control a Double Acting Cylinder using a memory valve.                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | L3 | CO4  |
|      |    | Module – 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |    | ,    |
| Q.9  | a. | Develop a pneumatic circuit for a double acting cylinder to extend if one or both of two push buttons are operated. If both push buttons are then released the cylinder into retract.                                                                                                                                                                                                                                                                                                                   | 10 | L3 | COS  |
|      | b. | Build an electro-pneumatic circuit diagram to control double acting cylinder using direct method along with its electrical circuit for solenoid valve.                                                                                                                                                                                                                                                                                                                                                  | 10 | L4 | CO5  |
|      | A  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |      |
| Q.10 | a. | Construct pneumatic circuit for a transport system where a pneumatic 'Cylinder A' has to push a trolley to its desired rail with pre condition that the 'Cylinder A' will start advancing after a time delay of 20 sec and retract to its original position after a time delay of 10 sec.                                                                                                                                                                                                               | 10 | L3 | CO5  |
|      | b. | Build an Electro-pneumatic circuit diagram to control double acting cylinder using indirect method along with its electrical circuit for solenoid valve using 5/2 single solenoid valve.                                                                                                                                                                                                                                                                                                                | 10 | L4 | COS  |

2 of 2