22MCA12

First Semester MCA Degree Examination, Dec.2023/Jan.2024 Operating System Concepts

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	What is an Operating System? Explain with a neat diagram the components	10	L2	CO1
V.1		of computer systems.			
12.	b.	Explain various services provided by the operating system.	10	L2	CO ₁
	5.00.1	OR	A g	1 19	a s See See
Q.2	a.	Explain with the neat diagram the memory hierarchy.	10	L2	CO1
	b.	Explain different types of system program.	10	L2	CO ₁
		Module – 2			
Q.3	a.	Illustrate with a neat sketch, the process state and process control block.	10	L3	CO2
	b.	Discuss the various multithreading models. Also mention the benefits of	10	L2	CO2
		multithreading.		117	
V		OR			
Q.4	a.	Calculate the Average Waiting Time by drawing Gantt chart for	10	L3	CO2
		i) Round robin method with the time quantum $(q) = 2$ ms.			
		Process ID Arrival Time (AT) Burst Time (BT)			
		P1 0 5			1 * 1 * 1
	120	P2 1 4		2 1 2	
		P3 2 2	1		
		P4 4 1			
		ii) Shortest Remaining Time First (SRTF) with preemptive mode			
		Process ID Arrival Time (AT) Burst Time (BT)	- 1		E
		P1 0 5		1	À.
		P2 1 3			100
		P3 2 4			
		P4 4 1	-		
	b.	Explain the various operations of the processing with a neat diagram.	10	L2	CO
	1	Module – 3		· ·	
Q.5	a.	Explain Dining Philosopher's problem, illustrate using semaphore, how to	10	L3	CO
		handle it.	10	-	-
	b.	Considering the following example of a system, check whether the system	10	L3	CO
		is safe or not using Banker's Algorithm. Also determine the sequence of if			
		it is safe.			
	27/20	Process Allocation Max Work Available			
		A B C A B C A B C			
		P ₀ 0 1 0 7 5 3 3 3 2			
		P ₁ 2 0 0 3 2 2			
		P ₂ 3 0 2 9 0 2			100
		P ₃ 2 1 1 2 2 2			
		P ₄ 0 0 2 4 3 3			14

4.5, 5	<i>E</i> -1	OR		25	
Q.6 _{>}	a.	What is deadlock? Explain the necessary conditions for the deadlock in detail.	10	L2	CO3
	b.	Illustrate with example Peterson's solution for critical section problem and	10	L4	CO ₃
		prove that the mutual exclusion property is preserved.		×	2 *
19.4	Á	Module – 4			
Q.7	a.	Consider the following page reference string 1, 2, 3, 4, 2, 1, 5, 6, 2, 1,	10	L3	CO ₄
	20	2,3,7,6,3,2,1,2,3,6. How many page faults would occur, assuming three			
		frames for FIFO, LRU and Optimal Page Replacement?		* I	1 1
	b.	Write short note on:	10	L2	CO4
		i) Internal and external fragmentation			
	3	ii) Dynamic loading and linking.			
					12
8 - 19	- 1	OR			
Q.8	a.	Explain contiguous memory allocation.	10	L2	CO4
	b.	Illustrate with a help of supporting diagram TLB improves the performance	10	L3	CO4
		of demand paging.		5 ×	
		Module ₹5			
Q.9	a.	Explain the following terms briefly.	10	L2	CO5
	Tiene	i) File attributes			
		ii) File type			
	b.	With a neat diagram illustrate the working of various file access methods.	10	L3	CO5
2 4		OR			
Q.10	a.	Explain the following terms briefly.	10	L2	CO5
		i) File operations			
	2	ii) File system mounting			
7	b.	Illustrate the various directory structures and discuss in detail.	10	L3	CO5

2 of 2