22MBA24

Second Semester MBA Degree Examination, June/July 2024 **Operations Research**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FOUR full questions from Q.No.1 to Q.No.7.
2. Question No. 8 is compulsory.

3. Tables allowed.

4. M: Marks, L: Bloom's level, C: Course outcomes.

			M	L	C
Q.1	a.	Define Operations Research.	3	L2	CO1
-	b.	Give applications of Linear programming problem in management.	7	L3	CO2
	c.	A mutual fund company has Rs.20 lakhs available for investment in government bonds, blue chip stocks, speculative-stocks and short-term deposits. The annual expected return and risk factors are given below: Type of Annual Risk factor (0 to 100) in percentage (%) Govt. Bonds 14 12 Blue chip stocks 19 24 Speculative stocks 23 48 Short term deposits 12 6 Mutual fund is required to keep at least Rs.2 lakhs in short-term deposits. The average risk factors should not exceed more than 42. Speculative stocks must be at most 20 percent of the total amount invested. How should	10	L4	CO3
Q.2	a.	mutual fund invest the funds so as to maximize its total expected annual return? Formulate a Linear Programming problem. What are the limitations in LPP?	3	L2	CO1
	b.	Write down different steps in Decision Making process.	7	L3	CO ₂
	c.	Use graphical method to solve the following L.P. problem, Minimize $z = 20x_1 + 10x_2$ Subject to constraints $x_1 + 2x_2 \le 40$ $3x_1 + x_2 \ge 30$ $4x_1 + 3x_2 \ge 60$ where $x_1, x_2 \ge 0$	10	L4	CO3
Q.3	a.	What is an unbalanced case in a transportation model?	3	L2	CO1
	b.	Illustrate the basic feasible solution for the following transportation problem using NWCM. Origin Destination Supply I II III IV	7	L4	CO2

	C.	Use vogel	's Ap	proxii	nation	Metr	nod (VA	M) t	o iinc	ı ınıı	iai o	asic	feasible	10	L4	CO ₃
		solution fo	r the f	ollow	ing tra		tation pr	obler	n.	4		ž P				
			D_1	D_2	D_3	D ₄	Supply			4						
		S_1	7	14	8	12	400									
		S_2	9	10	12	5	300		400	- OS						
		S_3	11	6	11	4	300		4. V							
		Demand	200	450	300	250			1							
													Alan y			
Q.4	a.	What is Sa						7					X.	3	L3	CO2
	b.	A compan	ny mar	nagem	ent an	d the	labour u	inion	are n	negoti	iating	g a no	ew three	7	L4	CO3
		year settle	ment.	Each	of the	ese ha	s 4 strat	egies	. The	cost	s to	the c	ompany			
		are given	for eve	ery pa	ir of st	rategy	choice.									
		Union	Co	mpan	y strat	egies										
		Strategie	s I	II	III	IV				A	7					
		I	20	15	12	25										
		II	25	-	8	10										
		III	40		10	5										
			-5	400	11	0	-									
		IV				-		A 100	data	rmin	a tha	volu	of the			
		What stra	tegy v	will th	ne two	sides	adopt!	Aisc	dete	1111111	e the	vait	ie or the			
		game.														
	c.	Provide tl	he ont	imal i	ob sec	nuenci	ng invo	lving	three	mac	hine	s M ₁	M_2 , M_3	10	L5	CO5
	· .	in the ord	er of N	M. M.	and I	M ₂ for	the follo	wing	data	?						
		III the ord	CI UI I	VII, IVI	2 and 1	V13 101	Job	7 44 1116	5 autu							
							1	I	T.	14						
						4	J_1 J_2				4					
						M_1	7 12	_		8	4					
				M	achine	M_2		5	6	7						
					184	M_3			10							
		Find out	the ela	apsed	time (Total	time to	comp	olete)	and	IDLI	E tim	es for al			
		machines														
		machines	•													
				May				A				<u> </u>				
Q.5	a.	What are								4	41			3	L3	
	b.	Solve the	follo	wing	game	using	graphica	al ap	oroac	h. Fi	nd th	ne val	ue of the	7	L4	CO3
		game.								7						
		· V					B's strate	egy	-		7					
		4				>	B	B_2	B_3	B ₄						
	A			A	a's str	ategy	A ₁ 8	5	-7	9						
	190				1		A ₂ -6	6	4	-2						
	1			Phys.	Z		4				_		4			
	c.	Construc	t a ne	etwork	diag	ram f	or the fo	ollow	ing p	rojec	et wh	nose	activities	, 10	L2	CO:
		preceden	ce rel	ations	hin an	d dur	ation of	each	activ	itv is	give	en be	low. Also	0		
		find the	critic	al na	th and	d con	nletion	time	of 1	the r	roje	ct an	d critica	1		
				ai pa	ui ain	a con	ipiction	tillic	OI (the p	rojec	or an	d Clittle			
		activities				D			T		TT	т				
		Activiti			A	В	C D	E	F	G	H		7			
		Precedi		tivitie		-	- A	A	B, D	_	В	F, (1		4	
		Time (I	Days)		23	8	20 16	24	18	19	4	10				
			-		W											*

Q.6	a.	What are Looping and Dangling errors in Networking?	3	L2	CO1
	b.	A computer centre has three expert programmers. The centre wants three applications program to be developed. Estimates of the computer time in minutes required by the experts for the application program as follows: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO2
	c.	computer time is minimum. Solve by algebraic method the following game problem, Player B Player A $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	L4	CO3
Q.7	a.	Write any three assumptions under sequencing problem.	3	L2	CO1
	b.	Distinguish between PERT and CPM method.	7	L3 L4	CO2
		SI 1 2 D Supply SI 1 2 S 3 3 3 34 S2 3 3 1 2 15 S3 0 2 2 3 12 S4 2 7 2 4 19 Table Q7 (c) Is the above solution optimal? Justify your answer.			
Q.8	a. b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 087	L4	CO