

USN

BESCK104B / BESCKB104

First Semester B.E./B.Tech. Degree Supplementary Examination, June/July 2024

Introduction to Electrical Engineering

Time: 3 hrs.

BAN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Explain the general structure of electrical power system using single line diagram approach.	06	L2	CO5
	b.	Find the current and power in each resistor for the circuit shown in Fig.Q1(b).	06	L3	CO2
	c.	Explain the operation of Nuclear power generation plant with the help of block diagram.	08	L2	CO1
		OR	i.		
Q.2	a.	State and explain Kirchoff's laws.	06	L2	CO1
	b.	Distinguish between conventional and nonconventional sources of energy.	06	L3	CO1
	c.	Find the current I_1 , I_2 and I in the network shown in Fig.Q2(c). $ \begin{array}{cccccccccccccccccccccccccccccccccc$	08	L3	CO2
		Module – 2			
Q.3	a.	Define the following terms: (i) Average value (ii) Phase difference (iv) Amplitude	06	L1	CO2
***************************************		1 of 3			

		BESCK104B / J	BES	CKI	3104
	b.	A pure inductor excited by sinusoidal varying AC voltage, show that the average power consumed by inductor is zero. Also draw the voltage, current and power waveforms.	08	L2	CO2
	c.	A star connected load consists of 6Ω resistance and 8Ω inductive reactance in each phase. A supply of 440 V at 50 Hz is applied to the load. Find the line current, power factor and power consumed by the load.	06	L3	CO2
Q.4	a.	Develop an equation for the power consumed by an RC series circuit. Draw the waveforms of voltage, current and power.	08	L2	CO2
	b.	What are the limitations and advantages of three phase system?	06	L3	CO2
	c.	A circuit consists of resistance 10Ω , an inductance of 16 mH and a capacitance of 150 μF connected in series. A supply of 100 V at 50 Hz is given to the circuit. Find the current, power factor and power consumed.	06	L3	CO2
		Module – 3	08	L2	CO3
Q.5	a.	With the help of neat diagram, explain the construction of D.C generator.	Vo	112	
	b.	Give the classification of DC generator. Obtain the expression for EMF equation of a DC generator.	06	L2	CO4
	c.	A four pole d.c. shunt motor takes 22.5 Amps from a 250 V supply, $R_a = 0.5 \ \Omega$ and $R_{sh} = 125 \ \Omega$. The armature is wave connected with 300 conductors. If the flux per pole is 0.02 wb, calculate: (i) The speed (ii) Torque developed (iii) Power developed	06	L3	CO4
		OR	0.0	T 1	CO4
Q.6	a.	What is back emf in a dc motor? What is its significance?	06	L1	CO4
	b.	Sketch N-I and T-I characteristics of DC: (i) Series (ii) Shunt motors. Mention two applications of each motor.	08	L4	CO4
	c.	A 8 pole wave wound DC shunt generator has 36 slots, 10 conductors in each slot. The flux/pole is 0.01 wb. It runs at 1200 rpm. The armature and field resistance are 0.1 Ω and 100 Ω respectively. Calculate the terminal voltage when the load current is 120 A. Neglect armature reactions.		L3	CO4
		Module – 4			
Q.7	a	. Discuss various types of losses in a transformer.	08	B L2	0
	b	. With neat sketch, explain the construction and working principle of 1¢ transformer.	06	5 L2	2 CO3
	c	A 3 phase induction motor with 4 poles is supplied from an alternator having six poles and running at 1000 rpm. Calculate: (i) Synchronous speed of the IM (ii) Its speed when slip is 0.04 (iii) Frequency of the rotor emf when the speed is 600 rpm 2 of 3	r 06	6 L3	3 .CO4

BESCK104B / BESCKB104

		OR			
Q.8	a.	With relevant diagram, explain the construction of three phase induction	08	L2	CO ₃
		motor.			
			0.5	T 2	001
	b.	Define slip of a 3-phase induction motor and derive the relation between	06	L2	CO ₄
		supply frequency and rotor current frequency.			
			06	L3	CO4
	c.	The primary winding of a 25 KVA transformer has 200 turns and is	06	L3	CU4
		connected to 230 volts, 50 Hz supply. The secondary turns are 50.			
		Calculate:			
		(i) No load secondary induced emf(ii) Full load primary and secondary currents			
		(iii) The flux density in the core, if the cross section of the core is 60 cm ² .			
		(III) The flux density in the colo, if the closs section of the			
		Module – 5			
Q.9	a.	Mention the different types of wiring with relevant circuit diagram and	08	L2	CO5
Q.7	a.	switching tables, explain two-way and three way control of lamps.			
	b.	Define tariff. Explain briefly the two part tariff with its advantages and	06	L2	COS
	~ •	disadvantages.			
					~~
	c.	Explain the working principle of fuse and MCB.	06	L2	COS
		OR	08	L2	CO
Q.10	a.	What is earthing? Why earthing is required? With the help of neat sketch,	VO	112	20.
		explain plate earthing.			
	ч	Weite a short note on precentions against an electric shock	06	L2	CO
	b.	Write a short note on precautions against an electric shock.			
	0	List out the power rating of household appliances including air	06	L2	CO
	c.	conditioners, PCs, Laptops, printers etc. Find the total power consumed.			

		C. A.			
		A. A			
		Y*			
					,
		4			
		3 of 3			
		3 of 3			
		3 of 3			
		List out the power rating of household appliances including air conditioners, PCs, Laptops, printers etc. Find the total power consumed. ****** 3 of 3			