ANALINATION OF ALLINATION	SN	cond Semester B.E./B.Tech. Degree Supplementary Exam June/July 2024			ГЕ201 ¹ ,
		BATCH Mathematics – II for EEE Stream			
-	r'			1	100
	I ime	 : 3 hrs. Max Note: 1. Answer any FIVE full questions, choosing ONE full question from each 2. VTU Formula Hand Book is permitted. 3. M : Marks, L: Bloom's level, C: Course outcomes. 		arks: <i>ule</i> .	100
		Module – 1	Μ	L	С
Q.1	a.	Find the angle between the surfaces $xy^2y = 3x + z^2$ and $3x^2 - y^2 + 2z = 1$ at the point (1, -2, 1).	7	L2	C01
	b.	If $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$, find div \vec{F} and curl \vec{F} .	7	L2	CO1
	c.	Show that the vector $\vec{F} = \frac{x\hat{i} + y\hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational.	6	L3	CO1
0.1		OR OR	-	TO	001
Q.2	а.	Find the total work done by the force $\vec{F} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$ along the curve $x = t^2 + 1$; $y = 2t^2$, $z = t^3$ from $t = 1$ to t = 2.	7	L2	CO1
	b.	Using Green's theorem, evaluate $\int_{c} (xy + y^2)dx + x^2dy$ where 'c' is the closed curve of the region bounded by $y = x$ and $y = x^2$.	7	L3	CO1
	c.	Using modern mathematical tools, write the code to find the find the gradient of $\phi = x^2y + 2xz - 4$.	6	L2	CO5
0.0		Module – 2			~~~
Q.3	a.	Define a Subspace. Show that the intersection of two subspaces of a vector V is also a subspace of V.	7	L2	CO2
	b.	Show that T : $\mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x, y, -z) is linear transformation.	7	L3	CO2
	c.	If $u = [2, -5, -1]^T$, $V = [-7, -4, 6]^T$, compute : i) $\langle u, v \rangle$ ii) $ u ^2$ iii) $ v ^2$ iv) $ u + v ^2$.	6	L2	CO2
Q.4	a.	Define linearly independent and linearly dependent set of vectors. Test the vectors $v_1 = [3, 0, -6]^T$, $v_2 = [-4, 1, 7]^T$ and $v_3 = [-2, 1, 5]^T$ forms a basis.	7	L2	CO2
	b.	State Rank – Nullity Theorem. For the matrix $A = \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\ 5 & -6 & 10 & 7 \end{bmatrix}$, Find : i) Rank of A ii) Dim (Nul A) iii) Bases	7	L3	CO2

A. P.

......

BMATE201

	c.	Using the modern mathematical tool, write the code to represent the reflection transformation $T : R^2 \rightarrow R^2$ and to find the image of vector	6	L2	C05
		(10, 0) when it is reflected about $y - axis$.			
		Module – 3			
		cosat, cosht	7	L2	CO3
Q.5	a.	Find the Laplace Transform of (i) $e^{-3t} \cos 2t$ ii) t .			
	b.	Find the Laplace Transform of the square wave function of period Za,	7	L2	CO3
	0.			L	COS
		defined by f(t) = $\begin{cases} k & 0 < t < a \\ -k & a < t < 2a \end{cases}$			
		$\int \cos t = 0 < t < \pi$	6	L3	CO3
	c.	Explain $f(t) = \begin{cases} \cos 2t & \pi < t < 2\pi \end{cases}$ in term of the unit step function and			
		$\cos 3t$ $t > 2\pi$			
		hence find L[f(t)].			
		OR			
Q.6	a.	Find the inverse Laplace transformer of	7	L2	CO3
		i) $\frac{2s-1}{s^2+4s+29}$ ii) $\frac{1}{(s-4)^2}$.			
		$s^{2} + 4s + 29$ $(s - 4)^{2}$			
	b.	Using the convolution theorem, find the inverse Laplace transform of	7	L3	CO3
		$(s-1)(s^2+1)$			
		Solve by the Laplace transforms $y'' + k^2y = 0$, given that $y(0) = 2$, $y'(0) = 0$.	6	L2	CO3
	c.	Solve by the Laplace transforms $y + k y = 0$, given that $y(0) = 2$, $y(0) = 0$.			
		Module – 4			1
Q.7	a.	Find the real root of $x \log_{10} x = 1.2$ by Regula – Falsi method correct to 2	7	L2	CO4
		decimal places the root lies between (2, 3).			
	b.	Find interpolating polynomical by Newton's divided difference formula for	7	L2	CO4
		the data $f(1) = 4$, $f(3) = 32$, $f(4) = 55$ and $f(6) = 119$.		8	
	<u>"ha</u>	trd 6 x	6	L2	CO4
	c.	Evaluate using Simpson's $\frac{1}{3}^{ru}$ rule $\int_{0}^{0} \frac{e^{x}}{1+x} dx$ by taking six equal parts.	0	L	
	3 (T)	5 01+X			
		OR			
Q.8	a.	Find the real root of the equation $\cos x = xe^x$, using Newton's – Raphson	7	L2	CO4
		method, correct to 3 decimal places taking $x_0 = 0.5$.			
	b.	Use Newton's backward interpolation formula to compute the value of y	7	L3	CO
		when $x = 6$, given that			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		2 of 3			
		Y.			
	4	1			
	5				
	5				

2 of 3

BMATE201

	c.	Evaluate $\int_{0}^{5} \frac{dx}{4x+5}$, by Trapezoidal rule, taking 6 ordinates.	6	L2	CO4
		Module – 5			
Q.9	a.	Employ Taylors series method to find y(0.2), given that $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0.	7	L3	CO4
	b.	Using Modified Euler's method, find $y(0.1)$ correct to 4 decimal places, given that $y' = x - y^2$, $y(0) = 1$, $h = 0.1$, perform 2 iterations.	7	L2	CO4
	c.	Employ Milne's predictor – corrector method given that $y' = x^2(1 + y)$ y(1) = 1, y(1.1) = 1.233, y(1.2) = 1.548, y(1.3) = 1.979 to find y(1.4).	6	L3	CO4
		OR			
Q.10	a.	Solve $y' = \log_{10} (x + y)$, by modified Euler's method at $x = 0.2$ and $x = 0.4$ with $h = 0.2$, perform 2 iterations at each stage.	7	L2	CO4
	b.	Use 4^{th} order Runge – Kutta method to solve $(x + y) y' = 1$ with $y(0.4) = 1$, at $x = 0.5$ correct to 4 decimal places.	7	L2	CO4
		Using modern mathematical tools, write a code to find y(0.1), given	6	L3	CO
	c.	y' = x - y, $y(0) = 1$ by Taylors series.	U	LJ	
		A PROPAGE A			
	Ż	A MAR AND A MAR			