

 $\langle \rangle$

					BMATM201			
	b.	If $\vec{F} = 2xy\hat{i} + yz^2\hat{j} + xz\hat{k}$ and S is the rectangular parallelopiped bounded by $x = 0, y = 0, z = 0, x = 2, y = 1, z = 3$. Find the Flux across S.	7	L3	CO2			
	c.	Write the modern mathematical tool program to find the divergence of the vector field $\vec{F} = (3x^2 - 3yz)i + (3y^2 - 3xz)j + (3z^2 - 3xy)k$	6	L3	CO5			
		Module – 3						
Q.5	a.	Form the partial differential equation by eliminating the arbitrary function ϕ from $\ell x + my + nz = \phi (x^2 + y^2 + z^2)$.	7	L2	CO3			
	b.	Solve $\frac{\partial^2 z}{\partial x \partial y} = \frac{x}{y}$, subject to the conditions that $\frac{\partial z}{\partial x} = \log_e x$ when $y = 1$ and $z = 0$ when $x = 1$.	7	L3	CO3			
	c.	Derive the dimensional heat equation in the standard form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$.	6	L2	CO3			
		OR						
Q.6	а.	Form the partial differential equation by eliminating the arbitrary constants a and b from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.	7	L2	CO3			
	b.	Solve $\frac{\partial^2 z}{\partial x^2} = a^2 z$ given that when $x = 0$, $\frac{\partial z}{\partial x} = a \sin y$ and $\frac{\partial z}{\partial y} = 0$.	7	L3	CO3			
	c.	Solve $(y - z) p + (z - x) q = (x - y)$. Module – 4	6	L2	CO3			
Q.7	a.	Find an approximate value of the root of the equation $\cos x = 3x - 1$ that lies between 0.5 and 1 correct to three decimal places using Regula false method.	7	L3	CO4			
	b.	The following table gives the distances (in miles) of the visible horizon forthe given heights (in feet) above the earth's surface. x 200250300350400 $F(x)$ 15.0416.8118.4219.921.27	7	L3	CO4			
	$ \Sigma $	Find y for $x = 218$.						
	c.	Evaluate $\int_{0}^{\pi} e^{\sin \theta} d\theta$ by using Simpson's $\left(\frac{1}{3}\right)^{rd}$ rule by taking 7 ordinates.	6	L3	CO4			
		OR						
Q.8	a.	Using the Newton-Raphson method, find the real root of the equation $e^x \sin x = 1$. (Here x is in radians).	7	L3	CO4			
		2 of 3						

				BMATM201		
	b.	Using Newton's divided difference formula, evaluate F(9) from the following table.	7	L2	CO	
		x 5 7 11 13 17 F(x) 150 392 1452 2366 5202				
	c.	If $y(0) = -12$, $y(1) = 0$, $y(3) = 6$ and $y(4) = 12$, find the value of y at $x = 2$ using Lagranges method.	6	L3	CO	
		0.0				
Q.9	a.	Module – 5Find by Taylor's series method the value of y at $x = 0.1$ to 4 decimal places	7	L2	CO	
		from $\frac{dy}{dx} = x - y^2$, $y(0) = 1$.				
	b.	Using the Runge-Kutta method of fourth order, find y(1.1) given that	7	L3	CO	
		$\frac{d\dot{y}}{dx} = xy^{1/3} \text{ taking } h = 0.1.$				
	c.	Given that $\frac{dy}{dx} = 2e^x - y$ and the data $y(0) = 2$, $y(0.1) = 2.010$,	6	L3	CO	
		y(0.2) = 2.040, $y(0.3) = 2.090$. Compute y at x = 0.4 by applying Milne's method.				
		OR				
Q.10	a.	Using the modified Euler's method, find $y(20.2)$ given that	7	L3	CC	
		$\frac{dy}{dx} = \log_{10}(x / y) \text{ with } y(20) = 5 \text{ taking } h = 0.2.$				
	b.	Apply the Runge-Kutta method of fourth order, to find an approximate	7	L3	CC	
		value of y at x = 0.1, given that $\frac{dy}{dx} = 3e^x + 2y$ with y(0) = 0 and h = 0.1				
	c.	Using modern mathematical tools write a program to find y at $x = 1.4$,	6	L3	CC	
		given $\frac{dy}{dx} = x^2 + \frac{y}{2}$, $y(1) = 2$, $y(1.1) = 2.2156$, $y(1.2) = 2.4649$,				
		y(1.3) = 2.7514. Use corrector formula thrice using Milne's method.				
				8		

	Y	on Ar				
		3 of 3			,	
	, Ja					
	5					
	X					