

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Obtain the Fourier series for the function : 1

$$f(x) = \begin{cases} -\pi & \text{in} - \pi < x < 0 \\ x & \text{in} \ 0 < x < \pi \end{cases}$$

Hence deduce that
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$

(08 Marks)

b. Express y as a Fourier series up to the second harmonics, given :

X	0	$\frac{\pi}{3}$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
у	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

(08 Marks)

OR

a. Obtain the Fourier series for the function $f(x) = 2x - x^2$ in $0 \le x \le 2$. 2 (08 Marks) b. Obtain the constant term and the first two coefficients in the only Fourier cosine series for given data :

Х	0	1 0	2	3	4	5
V	4	8	15	7	6	2

(08 Marks)

3

Module-2 a. Find the Fourier Transform of $\begin{cases} 1 - x^2 & |x| \le 1 \\ 0 & |x| > 1 \end{cases}$ f(x) =(06 Marks) Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}}$ $\cos \frac{x}{2} dx$. b. Find the Fourier cosine transform of x for 0 < x < 1 $f(x) = \begin{cases} 2 - x & \text{for } 1 < x < 2 \end{cases}$ (05 Marks) 0 x > 2for c. Find the inverse Z – transform of $3z^{2} + 2z$ (05 Marks) (5z-1)(5z+2)

1 of 3

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be

- a. Find the Fourier sine transform of $\frac{e^{-ax}}{a}$ -, a > 0.(06 Marks)
 - b. Find the Z transform of i) $\cosh n\theta$ ii) n^2 . (05 Marks) (05 Marks)
 - Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0$, $y_1 = 1$. C.

Module-3

- Find the Correlation coefficient and equations of regression lines for the following data: 5 a. x 1 2 3 4 5 2 5 3 8 7 У
 - b. Fit a straight line to the following data:

Х	0	1	2	3	4
у	1	1.8	3.3	4.5	6.3

c. Find a real root of the equation $xe^x = \cos x$ correct to three decimal places that lies between 0.5 and 0.6 using Regula-falsi method. (05 Marks)

OR

6 a. The following regression equations were obtained from a correlation table. y = 0.516x + 33.73x = 0.516y + 32.52

Find the value of (i) Correlation coefficient (ii) Mean of x's (iii) Mean of y's. (06 Marks) b. Fit a second degree parabola to the following data:

					6		(05 Marks)
у	1.1	1.3	1.6	2.0	2.7 🥒	3.4	4.1
Х	1.0	1.5	2.0	2.5	3.0	3.5	4.0

c. Use Newton-Raphson's method to find a real root of x sin $x + \cos x = 0$ near $x = \pi$, carry out three iterations. (05 Marks)

Module-4

- a. Give f(40) = 184, f(50) = 204, f(60) = 226, f(70) = 250, f(80) = 276, f(90) = 304. Find f(38)7 using Newton's forward interpolation formula. (06 Marks)
 - b. Find the interpolating polynomial for the data :

X	0	100m.1	2	5	
У	2	3	12	147	

By using Lagrange's interpolating formula.

 $\int (1-8x^3)^{\frac{1}{2}} dx$ considering 3 equal intervals. c. Use Simpson's $\frac{3}{8}$ th rule to evaluate

(05 Marks)

OR

The area of a circle (A) corresponding to diameter (D) is given below : 8 a.

D	80	85	90	95	100
А	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105, using an appropriate interpolation formula.

(06 Marks)

2 of 3

(05 Marks)

(06 Marks)

(05 Marks)

Given the values : b.

Х	5	7	11	13	17
f(x)	150	392	1452	2366	5202

Evaluate f(9) using Newton's divided difference formula.

(05 Marks)

c. Evaluate $\int_{0}^{\infty} \frac{x}{1+x^2} dx$ by Weddle's rule taking seven ordinates. (05 Marks)

Module-5

- Find the work done in moving a particle in the force field $\vec{F} = 3x^2 i + (2xz y)j + z k$ along the curve defined by $x^2 = 4y$, $3x^3 = 8z$ from x = 0 to x = 2. (06 Marks) 9 a. (06 Marks)
 - Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)i$ 2xy j around the rectangle $x = \pm a$, y = 0, b. y = b. (05 Marks)
 - Solve the Euler's equation for the functional $\int_{x_0}^{x_1} (1 + x^2y^1)y^1 dx$. (05 Marks) c.

OR

Verify Green's theorem for $\int (xy + y^2)dx + x^2dy$, where e is bounded by y = x and $y = x^2$. 10 a.

(06 Marks) Evaluate the surface integral $\iint \vec{F}$. Nds where $\vec{F} = 4xi - 2y^2j + z^2k$ and s is the surface b. bounding the region $x^2 + y^2 = 4$, z = 0 and z = 3. (05 Marks) c. Show that the shortest distance between any two points in a plane is a straight line.

(05 Marks)

3 of 3