

Third Semester B.E. Degree Examination, June/July 2024 **Engineering Mathematics - III**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Obtain the fourier series of the function $f(x) = x - x^2$ in $-\pi \le x \le \pi$ and

hence deduce $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$

(08 Marks)

b. Obtain the Half Range Fourier cosine series for the $f(x) = \sin x$ in $[0, \pi]$.

Obtain the constant term and the coefficients of first sine and cosine terms in the fourier expansion of y given

x:	0	1	2	3	4	5
y:	9	18	24	28	26	20

(06 Marks)

a. Obtain the fourier series of $f(x) = \frac{\pi - x}{2}$ in $[0, 2\pi]$ and hence deduce that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 (08 Marks)

b. Find the fourier half range cosine series of the function $f(x) = 2x - x^2$ in [0, 3] (06 Marks)

Express v as a fourier series upto first harmonic given

Job y	as a re	· correct	DULIUS	apro in	of mar.	HOIH	Siven		to a later of the			
X	0	30	60	90	120	150	180	210	240	270	300	330
у:	1.8	1.1	0.30	0.16	1.5	1.3	2.16	1.25	1.3	1.52	1.76	2.0

(06 Marks)

Module-2

a. Find the complex Fourier transform of the function:

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases} \text{ and hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} dx . \tag{08 Marks}$$

b. Find the Fourier cosine transform of e^{-ax}

(06 Marks)

c. Solve by using z – transforms $u_{n+2} - 4u_n = 0$ given that $u_0 = 0$ and $u_1 = 2$.

(06 Marks)

Find the Fourier sine and Cosine transforms of:

$$f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$$
b. Find the Z - transform of: i) n² ii) ne^{-an}. (06 Marks)

(06 Marks)

c. Obtain the inverse Z – transform of
$$\frac{2z^2 + 3z}{(z+2)(z-4)}$$
. (06 Marks)

(08 Marks)

Module-3

a. Find the correlation coefficient using the following table as values:

	ci ciic	0011	Olatic		OILIO	10110	401119	CIIC	
X	65	66	67	67	68	69	70	72	
V	67	68	65	68	72	72	69	71	

(06 Marks)

b.	Obtain	Obtain an equation			the f	orm	y = ax + b	given that,
		-	10	1.5	20	0.5		

X	0	-5	10	15	20	25
У	12	15	17	22	24	30

c. Apply Regula-Falsi method to find the root of $xe^x = \cos x$ in four approximations with four decimals in (0, 1). (06 Marks)

OR

a. Obtain the regression line of y on x for the following table of values:

(08 Marks)

X	1	2	3	4	5	6	7	8	9
У	9	8	10	12	11	13	14	16	15

b. Fit a parabola $y = a + bx + cx^2$ to the following data:

(06 Marks)

X	20	40	60	80	100	120
у	5.5	9.1	14.9	22.8	33.3	46

c. Find the root of the equation $x^4 - x - 9 = 0$ by Newton-Raphson method in three approximations with three decimal places. (Take $x_0 = 2$) (06 Marks)

Module-4

7 a. From the following table, estimate the number of students who obtained marks between 40 and 45.

Marks:	30 – 40	40 - 50	50 - 60	60 - 70	70 - 80	
No. of students	31	42	51	35	31	

(08 Marks)

b. Use Newton's dividend formula to find f(9) for the data:

v ·	5	7	11	13	17
Λ .	3	1	11	13	1 /
f(x):	150	392	1452	2366	5202

(06 Marks)

c. Find the approximate value of $\int \sqrt{\cos \theta} \ d\theta$ by Simpson's $\frac{1}{3}$ rule by dividing into 6 equal parts. (06 Marks)

a. The area A of a circle of diameter d is given for the following values:

		7653		- U				
d	:	80	85	90	95	100		
a	:	5026	5674	6362	7088	7854		

Calculate the area of circle of diameter 105 by Newton's backward formula.

(08 Marks)

b. Using Lagrange's interpolation formula to find the polynomial which passes through the points (0, -12), (1, 0), (3, 6), (4, 12). (06 Marks)

c. Evaluate $\log_e x \, dx$ taking 6 equal parts by applying Weddle's rule.

(06 Marks)

Module-5

- 9 a. Verify Green's theorem in the plane for $\oint_C (3x^2 8y^2) dx + (4y 6xy) dy$, where C is the boundary of the region defined by x = 0, y = 0, x + y = 1. (08 Marks)
 - b. Evaluate $\oint_C \vec{F} \cdot d\vec{r}$ by Stoke's theorem with $\vec{F} = y^2 \hat{i} + x^2 \hat{j} (x+z)\hat{k}$ and C is the boundary of the triangle with vertices at, (0, 0, 0), (1, 0, 0) and (1, 1, 0). (06 Marks)
 - c. Show that the geodesies on a plane are straight lines.

(06 Marks)

OR

- a. Find $\iint_S \vec{F} \cdot d\vec{S}$, where $F = (2x + 3z)\hat{i} (xz + y)\hat{j} + (y^2 + 2z)\hat{k}$ and S is the surface of the sphere having center at (3, -1, 2) and radius 3. (Use Gauss divergence theorem). (08 Marks)
 - b. Derive Euler's equation with usual notations as, $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (06 Marks)
 - c. Find the extremals of the functional, $\int_{0}^{x_{1}} \left(\frac{y'^{2}}{x^{3}} \right) dx.$

(06 Marks)