CBCS SCHEME

USN

21MAT31

Third Semester B.E. Degree Examination, June/July 2024 Transform Calculus, Fourier Series & Numerical Techniques

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Find the Laplace Transform of, $\left(\frac{4t+5}{e^{2t}}\right)^2$. (06 Marks)
 - b. The square wave function f(t) with period 2a is defined by,

$$f(t) = t ; 0 \le t \le a$$

= 2a - t; a \le t \le 2a

Find L[f(t)].

(07 Marks)

c. Evaluate $L^{-1} \left[\frac{s^2}{(s^2 + a^2)^2} \right]$ by applying convolution theorem. (07 Marks)

OR

- 2 a. Find inverse Laplace transform $\frac{2s^2 6s + 5}{s^3 6s^2 + 11s 6}$. (06 Marks)
 - b. Express the following function in terms of unit step function and hence find the Laplace transform.

$$f(t) = 1; 0 < t \le 1$$

= $t; 1 \le t \le 2$
= $t^2; t > 2$. (07 Marks)

c. Applying Laplace transform, solve the differential equation,

$$y''(t) + 4y'(t) + 4y(t) = e^{-t}$$

Subject to the condition y(0) = y'(0) = 0.

(07 Marks)

Module-2

- 3 a. Obtain the Fourier series of $f(x) = x^2$ over the interval $[-\pi, \pi]$, hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots + \infty.$ (06 Marks)
 - b. Obtain the half range sine series of the function, f(x) = x in the interval (0, 2). (07 Marks)
 - c. Obtain the constant term and co-efficient of first cosine and sine terms in the expansion of y from the following table:

X	0°	60°	120°	180°	240°	300°	360°
У	7.9	7.2	3.6	0.5	0.9	6.8	7.9

(07 Marks)

OR

4 a. Find the Fourier series of f(x) = 2 - x; $0 \le x \le 4$

$$x - 6$$
; $4 \le x \le 8$

(06 Marks)

- b. Obtain the half range sine series of the function, $f(x) = x^2$ over $(0, \pi)$.
- (07 Marks)

c. Obtain a₀, a₁, b₁ in the Fourier expansion of y using harmonic analysis for the data given,

X	0	1	2	3	4	5
У	9	18	24	28	26	20

(07 Marks)

Module-3

5 a. Find the Fourier sine and cosine transforms of $f(x) = e^{-\alpha x}$; $\alpha > 0$.

(06 Marks)

b. Obtain the inverse z-transform of, $\frac{2z^2 + 3z}{(z^2 - 2z - 8)}$

(07 Marks)

c. Find the Fourier transform of,

$$f(x) = x^2; |x| < a$$

= 0; |x| > a

where a is +ve constant.

(07 Marks)

OR

6 a. Find the Complex Fourier transform of the function,

$$f(x) = 1$$
 for $|x| \le a$
= 0 for $|x| > a$

Hence deduce, evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$.

(06 Marks)

b. Evaluate $Z_T \left[2n + \sin\left(\frac{n\pi}{4}\right) + 1 \right]$.

(07 Marks)

c. Solve the difference equation, $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using Z-Transform.

Module-4

7 a. Classify the following partial differential equation,

(i)
$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + 4 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x} \partial \mathbf{y}} + 4 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} - \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + 2 \frac{\partial \mathbf{u}}{\partial \mathbf{y}} = 0.$$

(ii) $x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1.$

(iii)
$$(1+x^2)\frac{\partial^2 u}{\partial x^2} + (5+2x^2)\frac{\partial^2 u}{\partial x \partial t} + (4+x^2)\frac{\partial^2 u}{\partial t^2} = 0$$

(iv)
$$(x+1)\frac{\partial^2 u}{\partial x^2} - 2(x+2)\frac{\partial^2 u}{\partial x \partial y} + (x+3)\frac{\partial^2 u}{\partial y^2} = 0$$
 (10 Marks)

b. Find the numerical solution of the parabolic equation $\frac{\partial^2 u}{\partial x^2} = 2\frac{\partial u}{\partial t}$, using Schmidt formula. Given u(0,t) = 0 = u(4,t) and u(x,0) = x(4-x) by taking h = 1 find the values upto t = 5.

OR

8 a. Solve $u_{xx} + u_{yy} = 0$ in the following square region with the boundary conditions as indicated in the Fig. Q8 (a). (10 Marks)

Fig. Q8 (a)

21MAT31

b. Solve numerically $u_{xx}=0.0625\,u_{tt}$, subject to the conditions $u(0,\,t)=0=u(5,\,t)$, $u(x,\,0)=x^2(x-5)$ and $u_{t}(x,0)=0$ by taking h=1 for $0\leq t\leq 1$. (10 Marks)

Module-5

- 9 a. Use Runge-Kutta method to find y(0.2) for the equation, $\frac{d^2y}{dx^2} x\frac{dy}{dx} y = 0$. Given that y = 1, y' = 0 when x = 0.
 - b. Find the curves on which the function, $\int_{0}^{1} \{(y')^{2} + 12xy\} dx$ with y(0) = 0 and y(1) = 1 can be extremised.
 - c. Derive the Eulers equation in the form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$ (07 Marks)
- 10 a. Solve the differential equation y'' + xy' + y = 0 for x = 0.4, using Milne's predictor-corrector formula given that, (06 Marks)

	X	0	0.1	0.2	0.3
×	У	1	0.995	0.9802	0.956
(ly	0	-0.0995	-0.196	-0.2863
(lx	V	9		

- b. Find the curve on which functional $\int_{0}^{\frac{\pi}{2}} \left[(y')^{2} y^{2} + 2xy \right] dx \text{ with } y(0) = y\left(\frac{\pi}{2}\right) = 0 \text{ can be extremized.}$ (07 Marks)
- c. Prove that shortest distance between two points in a plane is a straight line. (07 Marks)
