GBGS SCHEME

USN

BMATE301/BEE301

Third Semester B.E./B.Tech. Degree Examination, Dec.2023/Jan.2024 **Mathematics-III for EE Engineering**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

VTU Formula Hand Book is permitted.
 M: Marks , L: Bloom's level , C: Course outcomes.

4. Mathematics handbook is permitted.

D 0			E This			
¥		Module – 1	M	L	C	
Q.1	a.	Solve: $(D^4 + 8D^2 + 16)y = 0$.	6	L1	CO1	
	b.	Solve: $(D^3 - 3D + 2)y = 2 \sinh x$	7	L2	CO1	
	c.	Solve: $x^2y'' - 3xy' + 5y = 3\sin(\log x)$	7	L3	CO1	
		OR	191			
Q.2	a.	Solve: $(D^4 - 4D^3 - 5D^2 - 36D - 36)y = 0$.	6	L1	CO1	
	b.	Solve: $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2} + \frac{dy}{dx} = \sin 2x.$	7	L2	CO1	
	c.	Solve: $(2x+1)^2 \frac{d^2y}{dx^2} - 2(2x+1) \frac{dy}{dx} - 12y = 3(2x+1)$.	7	L3	CO1	
	==					
,		Module – 2				
Q.3	a.	Find the curve at best fit of the form $y = ax^6$ to the following data: x 1 2 3 4 5 y 0.5 2 4.5 8 12.5	6	L2	CO2	
2	b.	Calculate the coefficient of correlation and obtain the lines of regression for	7	L3	CO2	
		the following data:		3 7		
	¥	y 9 8 10 12 11 13 14 16 15	V	1 7 7		
	c.	In a partially destroyed laboratory record of correlation data, following results only available: Variance of x is 9 and regression lines, $4x - 5y + 33 = 0$; $20x - 9y = 107$. Find	7	L4	CO2	
		(i) Mean value of x and y (ii) SD of y.				
		(iii) Coefficient of correlation between x and y.		1.1	1 101	
		OR				
Q.4	a.	Fit a curve of the form, $y = ax^2 + bx + c$ to the following data: $x: 1 $	6	L2	CO2	
1	b.	If θ is the acute angle between the two regression lines relating the	7	L2	CO2	
		variables x and y, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$.		5 4.	•	
	10 M	Indicate the significance of the cases $r = 0$ and $r = \pm 1$	3			17 g

	c.	Ten competitor's in a music contest ranked by 3 judges A, B, C in the	7	L3	CO ₂
		following order. Use the rank correlation coefficient to decide which pair		2. 9	
		judges have the nearest approach to common test of music.			
		A 1 6 5 10 3 2 4 9 7 8			
	5.4.4	B 3 5 8 4 7 10 2 1 6 9	ver		1 1 1 1
	7 .	C 6 4 9 8 1 2 3 10 5 7	77. 2		
		Module – 3		F (25)	
Q.5	a.	Find the Fourier series for the function $f(x) = x^2$ in the interval	6	L2	CO3
2.0			÷.	7	1 9
		$-\pi \le x \le \pi$, hence deduce the $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.	2		
	\$2	$\sum_{n=1}^{\infty} n^2 = 6$,
	b.	Expand the function $f(x) = x(\pi - x)$ over the interval $(0,\pi)$ in half range	7	L3	CO3
	3				
	-	cosine Fourier series hence deduce that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$			
	. f.x	$n=1$ Π $1Z$			
	c.	The following table gives the variations of a periodic current A over a	7	L3	CO3
		certain period T.			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	= 0 -	6 3 2 3 6			
		A(amp) 1.98 1.30 1.05 1.30 -0.88 -0.25 1.98			
	1	Show that there is a current part of 0.75 amp in the current A and obtain the	# (7)		1 630
		amplitude of the first harmonic.			
		OR	_		
Q.6	a.	Find the Fourier expansion of the function $f(x) = (\pi - x)^2$ over the interval	7	L2	CO ₃
					1
		$0 < \pi < 2$ Hence deduce that $\sum_{i=1}^{\infty} 1 = \pi^2$			-
		$0 \le x \le 2\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.		*	
		$0 \le x \le 2\pi$. Hence deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.	6	12	CO3
			6	L2	CO3
	b.		6	L2	CO3
	b.		6	L2	CO3
	b.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine	6	L2	CO3
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series.			
	b.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series.	6	L2	CO3
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table.			
A. 188		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $\begin{vmatrix} x & 0 & \frac{\pi}{2} & \frac{2\pi}{2} & \pi & \frac{4\pi}{2} & \frac{5\pi}{2} & 2\pi \end{vmatrix}$			
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L3	CO3
0.7	c.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$			CO3
Q.7		Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	L3	CO3
Q.7	c.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	L3	CO3
Q.7	c.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO3
Q.7	c.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO3
Q.7	c.	Expand the function $f(x) = \begin{cases} \frac{1}{4} - x & \text{for } 0 < x < \frac{1}{2} \\ 0 - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ in the half range sine series. Find the constant term and the first harmonic in the Fourier series for $f(x)$ given by the table. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	

BMATE301/BEE301

b.	Find the Fourier cosine transform of $f(x) = e^{-ax}$, $a > 0$, hence deduce that	7	L3	CO4
	$\int_{0}^{\infty} \frac{\cos mx}{x^2 + a^2} dx = \frac{\pi}{2a} e^{-am}$		100	
	$\int_0^2 x^2 + a^2$ 2a		.,	
	$2\sigma^{2} + 2\sigma$	7	L3	CO4
c.	Find the inverse z-transform of $\frac{2z+3z}{z}$.		LJ	COA
	Find the inverse z-transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$.			
	OR O	20 Jan 20	5 1	- Parker
	_x ²	14	at in a	
Q.8 a.	Find the Fourier transform of $f(x) = e^{-2}$.	6	L2	CO4
		7	L3	CO4
b.	Find the z-transform of $\sin n\theta$ and $\cos n\theta$ hence find $z\left\{\cos\left(\frac{n\pi}{2}\right)\right\}$ and	,	L3	C04
	(2)]			
	$\left[\left(n\pi \right) \right]$			
	$z\left\{\sin\left(\frac{n\pi}{2}\right)\right\}$.			
c.	Solve the difference equation, $u_{n+2} - 5u_{n+1} + 6u_n = 2$ given $u_0 = 3$, $u_1 = 7$,	7	L3	CO4
	using z-transforms.			
	Module – 5		1000	400
Q.9 a.	Define (i) Type I and Type II errors.	6	L1	CO5
Q.9 a.	(ii) Confidence interval.	, 0	LI	COS
	(iii) Level of significance.	21 × 4		
			-	
b.	The probability that a pen manufactured by a company will be defective is	7	L2	CO5
	0.1. If 12 such pens are selected, find the probability that	y later	17	0.07
1 275	(i) Exactly 2 will be defective.			
2 4 - 4	(ii) At least 2 will be defective.		1	
	(iii) None will be defective			
c.	In normal distribution, 31% of the items are under 45 and 8% are over 64.	7	L3	CO5
× 2	Find the mean and SD, given that $A(0.5) = 0.19$ and $A(1.4) = 0.42$, where	7.	f - I	* * * * *
	A(Z) is the area under the standard normal curve from 0 to z.	*		1.774
	OR	1.7	100	
0.10			T 0	605
Q.10 a.	The pdf P(x) of a variate X is given by the table:	6	L2	CO5
	x: 0 1 2 3 4 5 6 P() X 5 5 7 7 0 7 11 X 12 X		8.	
	P(x): K 3K 5K 7K 9K 11K 13K			
	For what value of K, does this represent a valid probability distribution?		30, 70	
	Also find $P(x < 4)$, $P(x \ge 5)$ and $P(3 < x \le 6)$.			X
(Care	Consider the sample consisting of nine numbers, 45, 47, 50, 52, 48, 47, 49,	7.	L3	CO5
b.		10	1	A Section
	53 and 51. The sample is drawn from a population whose mean is 47.5.	2.5	15 700	
	53 and 51. The sample is drawn from a population whose mean is 47.5. Find whether the sample mean differs significantly from the population			130
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31)		13	COS
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31) A die is thrown 60 times and the frequency distribution for the number	7	L3	CO5
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31) A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the table:		L3	CO5
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31) A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the table: x 1 2 3 4 5 6		L3	CO5
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31) A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the table: x 1 2 3 4 5 6 frequency 15 6 4 7 11 17		L3	CO5
	Find whether the sample mean differs significantly from the population mean at 5% level of significance (Given $t_{0.05}$ (df = 8) = 2.31) A die is thrown 60 times and the frequency distribution for the number appearing on the face x is given by the table: x 1 2 3 4 5 6		L3	CO5

* * * * *