

Engineering Mathematics for EEE

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M : Marks , L: Bloom's level , C: Course outcomes.
3. VTU Formula Hand pook is permitted.

		Madula 1	NA	T	C
0.1	6	$\frac{\text{Module} - 1}{3 + 4}$	M		C
Q.1	a.	Solve : $(D^3 + D^2 + D + 1)y = e^{3x+4}$.	6	L1	CO1
	b.	Solve : $(D^2 - 6D + 9)y = 1 + x + x^2$	7	L2	CO1
	c.	Solve: $(1 + x^2)\frac{d^2y}{dx^2} + (1 + x)\frac{dy}{dx} + y = 2\sin\log(x + 1)$	7	L3	CO1
	1	OR			
Q.2	a.	Solve: $\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 6y = 0$	6	L1	CO1
	b.	Solve $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \cos 3x$	7	L2	CO1
	c.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = (1 + x^2)$.	7	L3	CO1
		Module – 2			
Q.3	a.	Fit by the method of least square, the straight line $y = ax + b$ that best fits the following data : $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6	L1	CO2
	b.	Fit a parabola of the form, $y = ax^2 + bx + c$ to the following data: $ \begin{array}{r} x & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline y & 1 & 3 & 7 & 13 & 21 & 31 \end{array} $	7	L2	CO2
	c.	Find the co-efficient of correlation and line of regression for the following data : $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L2	CO2
		OR			
Q.4	a.	Find a curve of best fit of the form $y = ax^b$ to the following : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	L1	CO2

1 of 3

BMATE301/BEE301

	b.	b. In a partially destroyed lab record only the lines of regression of y on x and x on y are $y = 0.516x + 33.73$ and $x - 32.52 = 0.512y + 32.52$ respectively.										L2	CO2
		Calculate \overline{x}	\overline{y} and \overline{y}	coefficie	ent of co	orrelation	n betwee	n x and	у.				
	c.	A random sample of recent repair jobs was selected and estimated cost and actual cost were recorded									7	L2	CO2
		Estimated cost (x) :	300	450	800	250	500	975	475	400			
		Actual $cost(y)$:	273	486	734	297	631	872	396	457			
		Compute the	e rank c	orrelatio	on.								
					Mo	odule – 3	3		Now Y		1		
Q.5	a.	Obtain the Fourier series of $f(x) = \frac{\pi - x}{2}$ in $0 < x < 2\pi$. Hence deduce that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$										L2	CO3
	b.	Expand $f(x) = x$ in half range cosine series over the interval $(0, \pi)$									6	L2	CO3
	c.	Obtain the constant term and coefficients of the first sine and cosine terms in the Fourier expansion of y as given in the following table : $\begin{array}{c ccccccccccccccccccccccccccccccccccc$										L2	CO3
				An		OR	A.	7		No. No.			
Q.6	a.	Obtain the I	Fourier	series fo	or the fu	nction f	$(\mathbf{x}) = \begin{cases} \\ 1 \end{cases}$	$1 + \frac{4x}{3} - \frac{4x}{3}$	$ \begin{array}{l} \text{in } -\frac{3}{2} \\ \text{in } 0 \leq \end{array} $	$x < \frac{3}{2}$	7	L2	CO3
	b.	• Obtain the half-range sine Fourier series of $f(x) = x^2$ in $0 < x < \pi$.											CO3
	c.	Obtain the first three coefficient in the Fourier cosine series for y where y is given in the following table :									7	L2	CO3
				/	M	odule – 4	4			L.			
Q.7	a.	$[1 \text{ for } \mathbf{x} \le a]$										L2	CO4
	b.	V 2									6	L2	CO4
		L L		1 / 4		2	F 2						
		P-				2 of	13						
	h	\mathbf{x}^{\prime}											
		7 12											

BMATE301/BEE301

	c.	Find the inverse Z-transform of, $\frac{4z^2 - 2z}{z^3 - 5z^2 + 8z - 4}$.	7	L2	CO4						
		OR									
0.0			7	L2	CO4						
Q.8	а.	a. Find the Fourier transform of, $f(x) = xe^{- x }$									
	1	$Z(u_n) = \frac{2z^2 + 3z + 4}{(z-3)^3}$, show that $u_0 = 0$, $u_1 = 2$, $u_2 = 21$	6	L2	CO4						
	b.	$Z(u_n) = \frac{1}{(z-3)^3}$, show that $u_0 = 0$, $u_1 = 2$, $u_2 = 21$									
		10-2	7	L2	CO4						
	c.	Find the Inverse Z-transform of $u(z) = \frac{18z^2}{(2z-1)(4z+1)}$	/		04						
		(2z-1)(4z+1)									
		Module – 5									
Q.9	a.	Find the value of K such that the following distribution represents a finite	7	L1	CO5						
		probability distribution. Hence find its mean and standard deviation. Also									
		find $P(x \le 1), P(x > 1)$ and $P(-1 < x \le 2)$.									
		x -3 -2 -1 0 1 2 3									
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
		$P(\mathbf{X}) \mid \mathbf{K} \mid 2\mathbf{K} \mid 3\mathbf{K} \mid 4\mathbf{K} \mid 3\mathbf{K} \mid 2\mathbf{K} \mid \mathbf{K}$									
	h	2% of the fuses manufactured by a firm are found to be defective. Find the	6	L2	CO5						
	b.		0	LL							
		probability that a box containing 200 fuses contains :									
		 (i) No defective fuses. (ii) 3 or more defective fuses. 									
		Find the student's t for the following variable values in a sample of eight	7	L2	CO5						
	c.				005						
		-4, -2 , -2 , 0 , 2 , 2 , 3 , 3 taking the mean of the universe to be zero.									
		OR									
0.10		The number of telephone lines busy at an instant of time is a binomial	7	L3	C05						
Q.10	a.			LJ	0.05						
		variate with probability 0.1 that a line is busy. If 10 lines are choosen at									
		random, what is the probability that, (i) no line is busy (ii) all lines are busy (iii) at least one line busy (iv) atmost 2 lines are busy.									
		busy (III) at least one line busy (IV) atmost 2 lines are busy.									
	1	If 'u' is an aunomential variate with mean 5 avaluate	6	L2	CO5						
	b.		0	L	05						
		(i) $P(0 < x < 1)$									
	dis	(ii) $P(-\infty < x < 10)$ (iii) $P(x \le 0 \text{ or } x \ge 1)$									
	(Galana										
	X	1 + 1 $1 + 1 = 2(4 + 1) = 1 + 1 = 1 = 1 = 1 = 1 + 1 = 1 = 1 = 1$	7	12	COF						
	c.	A die is thrown 264 times and the number appearing on the face (x) follows	7	L2	CO5						
		the following frequency distribution.									
		x 1 2 3 4 5 6									
		f 40 32 28 58 54 60									
		Calculate the value of χ^2 .									
		* * * * *									

1