

BCIVC103/203

First/Second Semester B.E/B.Tech. Degree Examination, Dec.2024/Jan.2025 Engineering Mechanics

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

1 a. Write a note on principle of transmissibility of forces and its limitations. 6 L1 CO b. What is a force? What are its characteristics? 6 L1 CO c. Two forces acting on a body are 500 N and 1000 N as shown in Fig.Q1(e). Determine the third force F such that the resultant of all the three forces is 1000 N, directed at 40° to the x-axis. OR 2 a. What is a couple? List its characteristics. 6 L1 CO OR c. Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c). Fig.Q2(c). State and prove Varignon's theorem. 6 L2 CO Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c).			Module – 1	M	L	C
c. Two forces acting on a body are 500 N and 1000 N as shown in Fig.Q1(c). Determine the third force F such that the resultant of all the three forces is 1000 N, directed at 40° to the x-axis. Value Va	1	a.				CO1
Determine the third force F such that the resultant of all the three forces is 1000 N, directed at 40° to the x-axis. OR Prig.Q1(c) OR 2 a. What is a couple? List its characteristics. b. State and prove Varignon's theorem. c. Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c). Soo N Soo N Fig.Q2(c)		b.	What is a force? What are its characteristics?	6	L1	CO1
2 a. What is a couple? List its characteristics. b. State and prove Varignon's theorem. c. Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c). 3		c.	Determine the third force F such that the resultant of all the three forces is 1000 N, directed at 40° to the x-axis.	8	L3	CO1
b. State and prove Varignon's theorem. 6 L2 CO c. Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c). 7 Soo N 7 Soo N 7 Fig.Q2(c)			OR			
c. Find the moment of 500 N force about the points A, B, C and D as shown in Fig.Q2(c). 8 L3 CO	2	a.	What is a couple? List its characteristics.	6	L1	CO1
Fig.Q2(c). Fig.Q2(c). Fig.Q2(c).		b.	State and prove Varignon's theorem.	6	L2	CO1
		c.	Fig.Q2(c). 30° 3m 4 2m Dy 6m x	8		CO1
$\int df \Delta$			1 of 4			

+000 N

Fig.Q5(c)

2 of 4

		OR			
6	a.	Explain different types of trusses.	4	L2	CO ₃
	b.	Explain:	4	L2	CO3
		i) Angle of friction ii) Cone of friction.			
	c.	Analyse the frame and tabulate the member forces for the frame shown in Fig.Q6(c).	12	L3	CO3
		A 2m 2m 000			
		Fig.Q6(c)	Đ		*
		Fig.Q6(c)			

M	n	d	m	P	_	4
17.	v	u	44.1			_

7	a.	State and prove parallel axis theorem.	8	L2	CO4
	b.	Locate centriod of the shaded area shown in the Fig.Q7(b).	12	L3	CO4
		40 mm + 80 mm + 40 mm + 20 mm + 40 mm + 40 mm + Fig.Q7(b)		· A	
		3 of 4			

		В	CIV	′C10.	3/203
		OR			
8	a.	Determine the centriod of a semi circular lamina of radius 'R' by the method of integration.	8	L3	CO4
	b.	Determine the moment of inertia of a pre-stressed concrete beam section shown in Fig.Q8(b), about horizontal and vertical axis passing through centriod. 600 mm 100 mm 200 mm Fig.Q8(b)	12	L3	CO4
			SC		
		Module – 5			
9	a.	Derive the equations of motion.	6	L2	COS
	b.	What is super elevation? Why is it necessary?	4	L1	COS
	C.	A ball is dropped from the top of a tower 30 high. At the same instant another ball is thrown upward from the ground with an initial velocity of 15 m/s. When and where do they cross?	10	L3	CO5
		OR			
10	a.	State and explain D'Alembert's principle.	4	L2	CO5
	b.	Define the following with a neat sketch: i) Angle of projection ii) Horizontal range iii) Time of flight.	4 .	L1	COS
	c.	A cricket ball is thrown by a player from a height of 2 m above the ground at an angle of 30° to the horizontal with a velocity 20 m/s is caught by another	12	L3	CO5

* * * * *

fieldsman at a height of 1 m from the ground. Find the distance between the

two players.