Fourth Semester B.E. Degree Examination, Dec.2024/Jan.2025 Turbomachines

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of Thermodynamic data hand book is permitted.

Module-1

- 1 a. Define the following dimensionless numbers, write relevant equations and mention at least one significance of each them.
 - i) Reynolds Numbers ii) Prandtl number iii) Grashoff Number iv) Nusselt Number.

(10 Marks)

b. Define a turbomachine. How different is a turbomachine compared to positive displacement machines with regard to i) Action ii) Operation iii) Conversion efficiency iv) Mechanical features, mention in brief and only up to the point. (10 Marks)

OR

- 2 a. Derive Euler turbine equation. State the assumptions made. Further, arrive at the alternate form of the equation, mention each component with significance. (10 Marks)
 - b. Two geometrically similar pumps, when tested were found to rotate at 1000 rpm. One of them has 0.3 m impeller diameter, discharges at 20 lps against a head of 15 m. Determine the impeller diameter and head of the other pump, if it has half the discharge capacity of the first.

 (10 Marks)

Module-2

- 3 a. Represent a compression process on a T-S or P-V diagram. Derive an expression for preheat factor. (10 Marks)
 - b. A high speed compressor is designed to compress air at 1.0 bar and 32°C to three times its initial pressure. If the compressor efficiency is 75%, determine the polytropic efficiency.

(10 Marks)

OR

- 4 a. Mention which device you choose for an expansion process, a compressor or a turbine? Define: i) Stage efficiency ii) Overall efficiency iii) Polytropic efficiency for an expansion process, and represent them on a T-S or P-V plot. (10 Marks)
 - b. It is required to design a two-stage expansion device to operate with an overall pressure ratio of 10 and with an efficiency of 86%. Determine the i) temperature ratio ii) temperature rise per stage, assuming an inlet temperature of 1199K and temperature rise in each stage is constant.

 (10 Marks)

Module-3

- 5 a. Sketch and explain:
 - i) Backward ii) forward iii) radial tip impellers of a centrifugal compressor. Represent the exit velocity triangles for each one of them. (10 Marks)
 - b. Explain the phenomenon of surging and choking in a centrifugal compressor. Draw the characteristic curves. (10 Marks)

(04 Marks)

OR

- 6 a. An axial flow compressor with 50% degree of reaction has 45° and 10°, inlet and exit blade angles respectively measured in axial direction, respectively. The blade speed and the axial velocity are constant, while the pressure ratio is 6 and overall efficiency is 85%, if the workdone factor is 0.75, blade speed is 200 m/s, and inlet static temperature is 37°C, determine the number of stages.
 (10 Marks)
 - b. Sketch and explain the working of an axial compressor stage, indicating the major components. (10 Marks)

Module-4

- 7 a. A 50% degree of reaction axial flow turbine has an axial component of fluid velocity at nozzle exit, equal to 180 m/s that matches the blades speed. If the nozzle is inclined at 27° to the direction of rotation, determine the rotor blade angles, construct the inlet and exit velocity triangles.

 (10 Marks)
 - b. With suitable block diagrams briefly explain: i) subsonic ii) supersonic turbines. (10 Marks)

OR

- 8 a. Explain different losses in a radial flow turbine. (08 Marks)
 - b. With a neat sketch, explain the concept of multi-staging in axial flow turbine. (08 Marks)
 - c. Discuss briefly on radial turbine characteristics.

Module-5

- a. Define and explain the following terms with reference to a centrifugal pump.
 i) Manometric head ii) Hydraulic efficiency iii) Suction and delivery heads iv) Overall efficiency.
 - b. A centrifugal pump discharges 2m³/s at 200 rpm at 6 m height. The exit blade angle tangent to the rotor is 26°, and the radial velcoity is 2.5 m/s. The impeller inlet and outlet diameters are 0.6m and 1.2 m respectively. Determine its manometric efficiency. Construct the velocity triangles (Not to scale)

 (10 Marks)

OR

- 10 a. Sketch and explain the working of a Kaplan turbine. What are its major components?
 - A Pelton wheel installed in a hydro plant generates 15mW, working under a head of 350 m, running at 500 rpm. The turbine operates at 84% efficiency, with coefficient of velocity of 0.98. Find: i) number of jets ii) diameter at each jet assuming discharge from each jet as 1.2 m³/s

* * * * :