Fourth Semester B.E. Degree Examination, Dec.2024/Jan.2025 Aerodynamics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Derive the Integral form of momentum equation by control volume approach. (10 Marks)
 - b. Explain the types of flow in fluids.

(06 Marks)

- c. Explain the following terms:
 - (i) Stream lines
 - (ii) Streak lines.

(04 Marks)

OF

- 2 a. What is compressible and incompressible flow? High speed flow in gases are highly compressibly, why? (04 Marks)
 - b. The stream function for an incompressible, two dimensional flow field is, $\psi = ay^2 bx$. Where a and b are constants. Is this an irrotational flow? Explain. (06 Marks)
 - c. Explain briefly propagation of sound wave in compressible fluid with neat sketch. Write a expression relating speed of sound and temperature. (10 Marks)

Module-2

- 3 a. Explain briefly the following:
 - (i) Fundamental aerodynamic variable.
 - (ii) Wing planform geometry.

(10 Marks)

- b. Explain the following:
 - (i) Aerodynamic forces and moments.
 - (ii) Centre of pressure.
 - (iii) Pressure coefficient.
 - (iv) Aerodynamic center.

(10 Marks)

OR

- 4 a. Derive the relation to calculate the Aerodynamic forces N' and A' and the momentum M'_{LE} in terms of P, θ and τ . (10 Marks)
 - b. Define Drag, what all the types of drag experienced by an aircraft, when flying at different mach regimes.

Module-3

5 a. Explain Non lifting flow over a cylinder, with relevant expression.

(10 Marks)

b. What are Kutta-Joukowski conditions, how lift is generated in a rotating circular cylinder?
(10 Marks)

OR

- 6 a. A fixed circular cylinder of infinite length is placed in a steady, uniform stream of an incompressible, non-viscous fluid. Assume that the flow is irrotational. Prove that the drag on the cylinder is zero. Neglect body forces. (08 Marks)
 - b. Derive the classical thin airfoil theory for symmetric and combered air foils. (1)

(12 Marks)

Module-4

- 7 a. State Helmholtz's vortex theorem and explain the vortex filament and the Biot-Savart law.
 (10 Marks)
 - b. What is effective angle of attack? Explain the Down wash and Induced drag. (10 Marks)

OR

8 a. Explain in detail Prandt's lifting line theory and its limitations.

(10 Marks)

b. Explain Extended lifting line theory of lifting surface theory, vortex lattice method for wings.

(10 Marks)

Module-5

- 9 a. Explain the following:
 - (i) Finite wing and Infinite wing
 - (ii) Down wash and Induced drag

(10 Marks)

b. What is the effect of sweep in aircraft wing? Explain typical aerodynamic characteristics.

OR

10 a. Write the effect of wing planform and aspect ratio.

(06 Marks)

- b. What is critical Mach number and aspect ratio of wings? Write Aspect ratio of rectangular wing.

 (04 Marks)
- c. Explain briefly the source panel and vortex lattice method.

(10 Marks)

* * * * *