Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Distinguish between
 - i) Intensive and Extensive properties
 - ii) Mechanical and Thermal equilibrium
 - iii) Closed and Open system
 - iv) System and surroundings

(10 Marks)

b. Consider a closed system (piston and cylinder) with constant pressure process suffix 1 and 2 represents initial and final state respectively.

$$P_1 = 2 \text{ bar}, V_1 = 0.5 \text{ m}^3/\text{Kg}, V_2 = 0.75 \text{ m}^3/\text{Kg}$$

 $T_1 = 25^{\circ}\text{C}, T_2 = 300^{\circ}\text{C}$

$$C_p = \left[0.5 + \frac{20}{T + 30}\right] \text{ KJ/Kg.K where T is in }^{\circ}\text{C.}$$

Calculate:

- i) Heat added
- ii) Work done
- iii) ΔU
- iv) ΔH

(10 Marks)

OR

- 2 a. A reversible heat engine takes heat at the rate of 500 kJ/sec from a heat source at 700 K. The work done by the cyclic device is 200 kJ/sec and rejects heat to two sinks at 400 K and 500 K. Calculate:
 - i) The engine thermal efficiency
 - ii) Amount of heat rejected to each sink

(10 Marks)

b. Show the equivalence of both the statements of second law of thermodynamics. (10 Marks)

Module-2

- a. Determine the pressure exerted by oxygen in a contain of 2 m³ capacity when it contains 5 Kg at 27° C using
 - i) Ideal gas equation
 - ii) Vander Waals equation

(10 Marks)

b. Write a note on a PVT behaviour of pure fluids and explain the physical significance triple point and critical point. (10 Marks)

OR

4 a. The equation of state of certain substance of given by the expression, $V = \frac{RT}{P} - \frac{C}{T^3}$, and the specific heat is given by the relation $C_P = A + BT$ where A, B and C are constants. Derive an

expressions for changes in internal energy ΔU , enthalpy (ΔH) and entropy for

- i) An isothermal process
- ii) Isobaric process

(10 Marks)

- b. Using Hess's law calculate the heat of format of methane gas from the following data:
 - i) $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O$, $\Delta_{e(CH_1)}^{\circ} = -890.94 \text{ kJ}$
 - ii) $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$; $\Delta H_{f(CO,)}^{\circ} = -393.78 \text{ kJ}$
 - iii) $H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(\ell)}; \Delta H_{f(H_2O)}^{\circ} = -286.03 \text{ kJ}.$ (10 Marks)

Module-3

- 5 a. Derive Maxwell's equations starting from fundamental property relations. (10 Marks)
 - b. Using the relationship between C_p and C_V , show that $C_P C_V = \frac{\beta^2 VT}{K}$. (10 Marks)

OR

- 6 a. Define fugacity and fugacity coefficient. Explain the effect of temperature and pressure on fugacity.

 (10 Marks)
 - b. Calculate the fugacity of liquid water at 303 K and 10 bar if the saturation pressure at 303 K is 4.241 KPa and specific volume of liquid water at 303 K is 1.004×10^{-3} /Kg. (05 Marks)
 - c. Define Activity. Explain the effect of temperature on activity. (05 Marks)

Module-4

- 7 a. Explain how partial motor properties can be measured by graphical method. (10 Marks)
 - b. Derive Gibb's Duhem equation. (10 Marks)

OR

- 8 a. The activity coefficients for component 1 in a binary solution can be represented by $\ln \gamma_1 = ax_2^2 + bx_2^3 + cx^4$, where a, b and c are concentration independent parameters. Derive an expression for $\ln \gamma_2$.
 - b. Explain Lewis Randall rule and Henry's law. (06 Marks)
 - c. Explain the criteria for phase equilibria. (04 Marks)

Module-5

- 9 a. Write a note on coupled reactions. (05 Marks)
 - b. Discuss briefly about feasibility of chemical reaction. (06 Marks)
 - c. Calculate the equilibrium constant at 298K of the reaction
 N₂O_{4(g)} → 2NO₂. Gives that the standard free energies of formation at 298 K are 97,540 J/K mol for N₂O₄ and 51,310 J/K mol for NO₂.

OR

- 10 a. Derive Van't Hoff equation and show that $\ln \frac{K_2}{K_1} = \frac{\Delta H^{\circ}}{R} \left[\frac{1}{T_1} \frac{1}{T_2} \right]$. (10 Marks)
 - b. With a short notes on the following:
 - i) Phase rule for reacting system
 - ii) Factors affecting equilibrium conversion (10 Marks)

* * * * *