USN	
-----	--

BME301

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mechanics of Materials

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define the following terms: (i) Poisson's ratio (ii) Factor of safety	04	L1	CO1
	b.	Show that the expression for the extension of uniformly tapering circular bar subjected to an axial load 'P' is given by, $\delta = 4PL/\pi d_1d_2E$	06	L1	CO1
	c.	A bar with stepped portion is subjected to the forces shown in Fig.Q1(c). Solve for the magnitude of force 'P' such that net deformation in the bar does not exceed 1 mm. E for steel is 200 GPa and that of aluminium is 70 GPa. Big end diameter and small end diameter of the tapering bar are 40mm and 12.5mm respectively. 40 mm² 200 mm² 3P Fig.Q1(c)	10	L3	CO1
		OR			
Q.2	a.	How do you relate Modulus of Elasticity and Bulk modulus?	10	L1	CO1
	b.	Solve for the values of stress and strain in portion AC and CB of the steel	10	L3	CO1
		bar shown in Fig.Q2(b). A close fit exists at both the rigid supports at room	7.5		
		temperature and the temperature is raised by 75°C. Take E = 200 GPa and			
		$\alpha = 12 \times 10^{-6}$ /°C for steel. Area of cross-section of AC is 400 mm ² and of BC is 800 mm ² .			
		C	19		
		0.3m 0.8m			
		Fig.Q2(b)			
0.0		Module – 2	10		000
Q.3	a.	A rectangular bar is subjected to two direct stresses ' σ_x ' and ' σ_y ' in two	10	L1	CO ₂
		mutually perpendicular directions. Show that the normal stress ' σ_n ' and			
		shear stress ' τ ' on an oblique plane which is inclined at an angle ' θ ' with			
		the axis of minor stress are given by			
		$\sigma_{n} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta$ and $\tau = -\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right) \sin 2\theta$			

	b.	The state of stress at a point in a stained material is shown in Fig.Q3(b).	10	L3	CO2
		Identify (i) Direction of principal planes (ii) Magnitude of principal			
		stresses (iii) Magnitude of maximum shear-stress and its direction.			
		j401/mm²			
		Ca. Just			
		601 mar			
		601			
		10 min 40 min			
		1			
		Fig.Q3(b)			
		OP			
Q.4	a.	Show that the change in volume of thin cylindrical shell is given by	10	10 L1	CO2
Q.4	a.		10	LI	CO2
		$\delta_{V} = \frac{Pd}{4tE} (5 - 4M)V$			
	b.	A pipe of 500 mm internal diameter and 75 mm thick is filled with a fluid	10	L3	CO2
		at a pressure of 6 N/mm ² . Solve for the maximum and minimum hoop			
		stress across the cross-section of the cylinder. Also construct the radial			
		pressure and hoop stress distribution sketch across the section.			
		Module – 3			3
Q.5	a.	Explain with sketches, the different types of loads acting on a beam.	10	L2	CO3
Q.c		2p.u.u. v.u. silesenes, tile uniter sile types et iouas actuag en a count.			
	b.	A cantilever beam carries UdL and point loads as shown in Fig.Q5(b).	10	L3	CO3
		Construct SFD and BMD.			
		15 KN 12 KW/m 10KN 20KN			
		C D B			
		lm em lm			
		Fig.Q5(b)	*		
0 (1	OR	40		000
Q.6	a.	Explain SFD and BMD for a cantilever beam with a uniformly varying load.	10	L2	CO3
	b.	An overhanging beam ABC is located as shown in Fig.Q6(b). Develop the	10	L3	CO3
		SFD and BMD. Also locate point of contraflexure.			
		2 KN			
		2KN/m 8			
		A Amminimum C			
		thinh 4m 2m			
		Fig.Q6(b)			20
		Module – 4			
Q.7	a.	Explain the assumptions made in simple bending and show that the	10	L2	CO4
		maximum transverse shear stress is 1.5 times the average shear stress in a			
		beam of a rectangular section.			

	b.	The cross-section of a beam is as shown in Fig.Q7(b). If permissible stress is 150 N/mm². Find its moment of resistance and compare it with equivalent section of the same area for a square section. 200mm Fig.Q7(b)	10	L4	CO4
		OR			
Q.8	a.	Illustrate an expression for the bending stress and radius of curvature for a straight beam subjected to pure bending.	10	L2	CO4
	b.	A 'T' shaped cross-section of a beam shown in Fig.Q8(b) is subjected to a vertical shear force of 100 KN. Inspect the shear stress at the neutral axis junction and flange. MI about the horizontal neutral axis is 0.0001134 m ⁴ . Somm Fig.Q8(b)	10	L4	CO4
		Module – 5			
Q.9	a.	Explain the assumptions made in pure torsion-theory and show that $\frac{T}{J_p} = \frac{\tau}{R} = \frac{G\theta}{L}$	10	L2	CO5
	b.	A hallow shaft having internal diameter 40% of its external diameter, transmits 562.5 KW power at 100 rpm. List the internal and external diameters of the shaft if the shear stress is not to exceed 60 N/mm^2 and the twist in a length of 2.5m should not exceed 1.3 degrees. The maximum torque being 25% greater than mean. $G = 9 \times 10^4 \text{ N/mm}^2$.	.10	L4	CO5
		OR			
Q.10	a.	Show the variation of Euler's critical load with slenderness ratio. Explain the limitations of Euler's theory and mention for formulae to overcome these limitations.	10	L2	CO5
	b.	A 1.5 m long column has a circular cross-section of 50 mm diameter. One end of the column is fixed in direction and position and the other end is free. Taking the factor of safety as 3, analyze the safe load using (i) Rankine's formula taking yield stress 560 N/mm² and $\alpha = 1/1600$. (ii) Euler's formula, taking $E = 1.2 \times 10^5$ N/mm².	10	L4	CO5

* * * * *