5

a.

	2.0				
USN	The second second				

18ME35A

Third Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Metal Cutting and Forming**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain the mechanics of chip formation and types of chips in orthogonal cutting. (09 Marks) 1
 - Derive an expression for a shear angle in orthogonal cutting in terms of rake angle and chip thickness ratio. (06 Marks)
 - c. Following data refers to the orthogonal cutting process. Chip thickness ratio 0.60 mm, feed 0.2 mm, rake angle 15°, calculate chip reduction coefficient and shear angle. (05 Marks)

OR

- Describe the Merchant's circle diagram. List the assumptions made. (10 Marks)
 - Differentiate between orthogonal and oblique cutting. (05 Marks)
 - List and explain essential properties of cutting tool material. (05 Marks)

Module-2

- Explain classification of milling machines. (05 Marks)
 - With a neat sketch, explain vertical spindle milling machine. (10 Marks)
 - Differentiate between drilling and boring. (05 Marks)

OR

- Explain radial drilling machine with a neat sketch. a.
- (10 Marks)

Explain shaping operations with a neat sketch. b.

- (06 Marks)
- Explain principle of centreless grinding machine with a neat sketch.

(04 Marks)

Module-3 Define tool wear. Explain crater wear and flank wear.

(07 Marks)

Explain different tool wear mechanisms. b.

- (06 Marks)
- A certain cutting tool during turning gave a tool life of 1 hour at a cutting speed of 30 m/min. What will be the life of the tool when it is used at the same cutting speed for finish turning? Take n = 0.125 for rough cut, and n = 0.1 for finish cut. (07 Marks)

OR

- Discuss the effects of machining parameters on surface finish.
 - (06 Marks)
 - Explain choice of cutting speed for minimum cost and maximum production.
- (06 Marks)
- Determine the optimum cutting speed for an operation carried on a lathe using the following data: tool change time 4 min, tool regrind time 3 min, machine running cost 20 paise per min, tool depreciation cost 1 rupee. Assume values of C and n of Taylor's tool life equation as 60 and 1/5 respectively. (08 Marks)

Module-4

Classify metal forming processes.

(06 Marks)

Write note on forging equipments.

(08 Marks)

Explain different defects in forging.

OR

8	a.	Explain different types of rolling mills.	(08 Marks)
	b.	Explain drawing process of pipe.	(06 Marks)
	c.	With a neat sketch, explain Indirect extrusion process.	(06 Marks)
		Module-5	
9	a.	Explain following sheet metal operation:	
		(i) Blanking	
		(ii) Punching	(08 Marks)
	b.	Write a note on drawing ratio in sheet metal operation.	(04 Marks)
	c.	Explain variables affecting in sheet metal drawing.	(08 Marks)
		OR	
10	a.	Explain embossing and coining operations.	(08 Marks)
	b.	Explain following dies with neat sketches:	
		(i) Progressive die.	
		(ii) Compound die.	(12 Marks)