BMT302

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Analog and Digital Electronics

Time: 3 hrs.

USN

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	List the commonly used filters and compare between the advantages of active and passive filters.	6	L1	CO1
	b.	Plot the frequency response of the major active filters.	8	L1	CO1
	c.	Explain the steps involved in first order low-pass filter design.	6	L2	CO1
		OR			
Q.2	a.	With a neat circuit, explain the working of second order Low-pass Butterworth filter.	10	L2	CO1
	b.	Design a Band-pass filter and show and relationship between Quality factor (Q) and Bandwidth (BW) for the center frequency.	10	L3	CO1
		Module – 2	1		
Q.3	a.	Mention the major types of oscillators and explain the significance of frequency stability in oscillators.	10	L2	CO2
	b.	Design a phase shift oscillator with $C=0.1\mu F$, $R_1=33k\Omega$, $R_f=1m\Omega$, $R=3.3k\Omega$, so that the generated frequency $f_0=200Hz$. Draw the circuit and mark the values.	10	L3	CO2
		OR		l	
Q.4	a.	With a neat Schematic, explain the working of non-inverting comparator and plot the output waveforms.	10	L2	CO2
	b.	Derive an expression for hysteresis voltage $(V_{\rm hy})$ in an inverting comparator as Schmitt trigger and plot the hysteresis curve.	10	L3	CO2
1100		Module – 3	L		
Q.5	a.	Draw and explain the pin configuration of 555-timer connection diagram.	10	L1	CO3
	b.	List the application of monostable multivibrator. Estimate the value of ' R_A ' in monostable multivirbrator used as a divide by network. If the frequency of the input trigger signal is $2KHz$ and $C=0.01\mu F$.	10	L3	CO3
		OR			l
Q.6	a.	Derive an expression for duty cycle for the Astable multivibrator and plot capacitor and output voltage waveforms.	10	L3	CO3

	b.	Determine the positive pulse width t_c negative pulse width t_d and free running frequency 'f ₀ '. In an astable multivibrator with the following value $R_A=2.2K\Omega,R_B=3.9K\Omega$ and $C=0.1\mu F$.	10	L3	CO3
		Module – 4			
Q.7	a.	Implement full adder in Sum Of Products (SOP) form and using two half adders with sum and carry expressions.	10	L2	CO4
	b.	Implement Quadruple 2*0-1 line multiplexer with function table.	10	L2	CO4
		OR			
Q.8	a.	Realize octal – to – binary encoder using basic gates and write the truth table to implement the same.	10	L2	CO4
	b.	Realize BCD – to – decimal decoder using basic gates and write truth tale to implement the same.	10	L2	CO4
	1	Module – 5			
Q.9	a.	Illustrate the working of D-Flip-Flop with a neat logic diagram and excitation table.	10	L2	CO5
	b.	Draw and outline the working of 4-bit synchronous counter.	_10	L2	CO5
		OR			
Q.10	a.	Explain clocked JK-Flip-flop with a neat logic diagram and characteristics equation.	10	L2	CO5
	b.	Design a BCD ripple counter with the following: i) Logic diagram ii) State diagram iii) Timing diagram.	10	L2	CO5

* * * * *