

21MT743

Seventh Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025

Mechatronics System Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain integrated design issues in mechatronics. (10 Marks)
 - b. Explain mechatroncis design process in detail. (10 Marks)

OR

- 2 a. Explain key elements of mechatronics. (10 Marks)
 - b. Explain the application of mechatrnoics in different fields. (10 Marks)

Module-2

a. Reduce the transfer function and draw the block diagram.

$$T(s) = \frac{s^2 - 3s + 4}{s^4 - 2s^3 - 5s^2 + 2s - 9}.$$
 (10 Marks)

b. Reduce the following mechanical system into block diagram. Refer Fig.Q3(b).

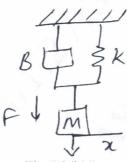


Fig.Q3(b)

(10 Marks)

OR

- 4 a. Arrive at the block diagram for bridge circuit system. (10 Marks)
 - b. Arrive at block diagram for transference system. (10 Marks)

Module-3

- 5 a. Explain fault finding techniques that are used in micro processor based system. (10 Marks)
 - b. Briefly explain the systematic fault location methods. (10 Marks)

OR

- 6 a. Explain transient state and steady state response of a signal. (10 Marks)
 - b. Explain natural and forced response with an example. (10 Marks)

Module-4

- 7 a. Explain the data acquation system with block diagram. (10 Marks)
 - b. Explain application, filtering and multiplexing. (10 Marks)

	UR		
a.	Explain digital to analog converter.	(10 Marks	
b.	Explain analog to digital converter. Find the approximate digital value for 11.2.	(10 Marks	
	Module-5		
	Explain mass – spring – damper system for physical based model.	(10 Marks	
b.	Explain position control of a permanent magnet DC gear motor.	(10 Marks	

OR

a. Explain auto control system for greenhouse temperature.
 b. Explain transducer calibrations system for automotive application.
 (10 Marks)
 (10 Marks)

* * * * *