Reg. No.		117 9
		 44

I Semester M.Sc. Degree Examination March/April - 2025

CHEMISTRY

Inorganic Chemistry - I

Paper: Ch-101

(CBCS 2019-20 Scheme)

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer question No. 1 and any FIVE of the remaining questions.

1. Answer any TEN of the following.

(10×2=20)

- a) State the Bent's rule with an example.
- b) Write the structure of CaF₂ and indicate the coordination number of Ca²⁺ and F-in it.
- c) Bond dissociation energies of H₂, Br₂ and HBr are 432, 190 and 362 kJmol⁻¹ respectively. Calculate the electronegativity values.
- d) Draw the topological structure of B₅H₉ and find its styx code.
- e) Give the preparation and structure of $[Fe(C_2B_9H11)_2]^{2-}$
- f) Draw the structures and mention the composition of benitoite and beryl.
- g) Give the applications of heteropoly acids.
- h) In what way N₂O₄ auto ionizes? How do as NaNO₃ act in it?
- i) Give the meaning of symbiosis with an example.
- j) Define the terms: isotopes, isobars, isotones and isomers.
- k) Calculate the binding energy per nucleon for $_{27}$ Co⁵⁹ with a mass of 58.95182 amu. (Mass of H atom = 1.008142 amu and neutron is 1.008982 amu).
- Enumerate the factors that favor metal-metal bonding.
- 2. a) Give the rules of LCAO for formation of molecular orbitals. Draw the MO energy level diagram of ICl.
 - b) Derive the limiting radius ratio for octahedral arrangement.
 - c) Depict the compound which is more covalent. Give reason for your choice
 - i) AgCl and Agl ii) NaCl and KCl iii) SnCl₂ and SnCl₄

(4+3+3)

[P.T.O.

- Discuss the synthesis, structure and bonding in borazine. Why is it called inorganic 3. benzene?
 - Why do zeolites exhibit molecular sieving property? Explain with examples. b)
 - What are carboranes? How are these classified? Give one example for each class. c) (4+3+3)
- Describe the measurement of absolute configuration of complexes using CD with 4. a) suitable examples.
 - b) Discuss the theoretical basis of HSAB concept. On the basis of this concept, identify the unstable complex ions in the following pairs of compounds. (4+6)
 - AgF, and Agl,
 - $[Co(NH_3)_5l]^{2+}$ and $[Co(NH_3)5F]^{2+}$ ii)
 - [Co(CN)₅F]³⁻ and [Co(CN)51]³⁻
- Explain the structure and bonding involved in [Re, Cl,]2-5. a)
 - b) Describe the salient features of shell model for nuclei.

(5+5).

- 6. a) Write Kapustinskii's equation and define the terms in it. Using this equation calculate the lattice energy of KNO₃. (Given radius of $K^+ = 1.38A^0$ radius of $NO_3 = 1.89A^0$)
 - On the basis of VSEPR theory, explain the shapes of XeF₈², IF₇ and TeF₅. What are its b) limitations.
 - What is isomorphous replacement with respect to silicates? Explain with an example. c) (3+4+3)
- 7. How are S_4N_4 and S_2N_2 prepared? Explain the structure and bonding in S_4N_4 . a)
 - Explain the preparation, bonding and structure of (PNCl₂)₃ b)
 - Give examples of any three isopolymolybdate ions. At what pH, these are stable? c) (3+4+3)
- 8. Explain Cotton effect with an example. a)
 - Distinguish between low nuclearity and high nuclearity carbonyl clusters. **b**)
 - Which one of $^{206}_{82}Pb$, $^{207}_{82}Pb$ and $^{208}_{82}Pb$ is the most stablest nuclide? Justify your choice. c)

(3+4+3)