

USN BEE302

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Electric Circuit Analysis

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

Q.1 a. Use source mobility of sources transformation to reduce the given networks shown in Fig Q1(a) into a single voltage source in series with a residuence points a b. Fig Q1(a) b. Determine the equivalent resistance between the terminals MN for networks shown in Fig Q1(b).	ork, istor	M 6	L L3	C CO1
shown in Fig Q1(a) into a single voltage source in series with a resibetween points a b. Fig Q1(a) b. Determine the equivalent resistance between the terminals MN for networks shown in Fig Q1(b).	ork, istor	6	L3	C01
Fig Q1(b)	the	6	L3	CO1
Use Mesh current analysis to find the power dissipated in the 80Ω residue of circuit shown in Fig Q1(c).	istor	8	L3	CO1

		OR		¥ .	001
Q.2	a.	Determine the circuit i ₁ , i ₂ , and i ₃ in the circuit of Fig Q2(a), using mesh	6	L3	CO ₁
		current method.			
		54			
		And Jon			
		10v = 20			
		1 (A) C1/2 \$1~			
		34			
		Fig Q2(a)			
		$\operatorname{Tig} Q_2(a)$			
	b.	Find the node voltages for the circuit of Fig Q2(b), using nodal analysis.	8	L3	CO2
	В.	42			
		A more			
		10V V, 325 V2			
		VI CT T WW X			
		28x \$10x			
		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			·
		6A 5504A			
		ŽV.			
		Fig Q2(b)			
	c.	Define Duality. Draw the dual of the network shown in Fig Q2(c).	6	L3	CO
		1014			
		310, 60/4			
		20A = Tap] 101 (1) 6A			
		Fig Q2(c)	j.		
	A	Module – 2			
Q.3	a.	State and prove super position theorem.	8	L1	CO
	1.			1.2	CO
	b.	For the network shown in Fig Q3(b), find the current i though $R = 2\Omega$ using the Thevenin's theorem.	6	L3	CO
		5n 4n			
		520m 1/2 0=21			
		50v () }20n \ \ \ \ \ \ \ R=2n			
		F: 02(1)			
		Fig Q3(b)			
	1	4 4			

	c.	Obtain the Norton's equivalent for the circuit shown in Fig Q3(c), between point a of b.	6	L3	CO2
		zu jan			
		@256°v			
		Post			
		Fig Q3(c)			
		OR			:
Q.4	a.	State and explain maximum power transfer theorem for DC circuit (Resistive Load).	6	L1	CO2
	b.	Find the current through 4Ω resistor using super position theorem for the circuit shown in Fig Q4(b).	8	L3	CO2
		7 16v			
		SA D 22 D2A 342			
		Fig Q4(b)			
	c.	Determine the value of R for the circuit shown in Fig Q4(c) and also determine the maximum power transfer.	6	L3	CO2
		Ricon			
		54 P 22 P 24v			
	Á	Fig Q4(c)			
	7	Module – 3			
Q.5	a.	Explain with circuit diagram how to determine of resonant frequency, bandwidth and Q of a series circuit.	10	L2	CO2
	b.	For the network elements R, L and C, write the equivalent circuit $A + t = 0^+$ [initial condition] $A + t = \infty$ [find condition]	4	L2	CO4
	c.	A series RLC circuit has $R=4\Omega$, $L=1mH$ an $C=10\mu F$, calculate Q-factor, bandwidth, resonant frequency and half frequencies.	6	L3	CO2

		OR			7
Q.6	a.	In the network shown in Fig Q6(a), the switch K is closed at t = 0 with the	8	L3	CO4
		capacitor uncharged. Find the values for i, di/dt and $\frac{d^2i}{dt^2}$ at $t = 0^+$.			
		dt^2			
		> Roman			
		* * * * * * * * * * * * * * * * * * *			
		lov I " oiles T C=1 MF			
		Fig Q6(a)			
			0	т.	CO4
	b.	Determine $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t = 0^+$, when the switch K is moved from position	8	L3	CO4
		1 to 2 at $t = 0$ for the Fig Q6(b) shown steady state having reached before			
		switching.			
		lon			
		1 Em			
		1904 T 21			
		200 / 325 31H			
		Fix O(h)			
		Fig Q6(b)			
	c.	Find the value of R _L for the circuit shown in Fig Q6(c)	4	L3	CO
		o de Sion			
		a Re- File Silver			
		7 7 130			
		Jione J.			
		Fig Q6(c)	ě		
		Module – 4			
Q.7	a.	State and prove initial and final Value theorem.	10	L1	CO5
	b.	Find the laplace transform of the following:	10	L2	CO5
	0.	i) sinwt ii) coswt iii) e ^{-at} sinwt iv) e ^{-at} coswt.	10		003
0.0		Ohtain the Lanlage transform of i) v(t) ii) r(t) iii) S(t)	10	1.2	COS
Q.8	a.	Obtain the Laplace transform of i) $u(t)$ ii) $r(t)$ iii) $\delta(t)$.	10	L2	CO5
	b.		10	L2	CO5
		S-domain equation of $I_1(s)$ t of $I_2(s)$ given			
		i) $I_1(s) = \frac{6.67(s+250)}{s(s+166.7)}$ ii) $I_2(s) = \frac{6.67}{s+166.7}$			
		\$(\$+100./) \$+100./			
					1

		Module – 5			
Q.9	a.	Determine the z-parameter of y-parameter for the circuit shown in Fig Q9(a).	10	L3	CO3
	b.	A 3\$\phi\$ supply with line voltage of 250V has a unbalanced delta connected load as shown in Fig Q9(b). Determine line currents active and reactive power for phase sequence ABC. A 2002 151300 ~ 2009 Fig Q9(b)	10	L3	CO3
		OR			
Q.10	a.	Find the transmission parameters for the circuit shown in Fig Q10(a) Fig Q10(a)	10	L3	CO3
	b.	3ϕ , 4 wire 208V CBA system as shown in Fig Q10(b) has a star connected load with $Z_A=5$ $\boxed{0^\circ}$ Ω , $Z_B=\boxed{30^\circ}$ Ω and $Z_c=10$ $\boxed{-60^\circ}$ Ω . Obtain the phase current, line currents and current through neutral wire.	10	L3	CO3
		Fig Q 10(b)			