Fourth Semester B.E. Degree Examination, Dec.2024/Jan.2025 Analog Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Derive the expression for Emitter current of a voltage divider bias and also discuss how to make I_E insensitive to variation in β and temperature.

 (10 Marks)
 - b. Design a collector to Base feedback resistor bias to obtain a dc current of 1 mA and to ensure $\pm 2V$ signal swing at the collector with $V_{CE} = 2.3V$. Assume $V_{CC} = 10 \text{ V}$ and $\beta = 100$. (07 Marks)
 - c What is trans-conductance of BJT and mention its significance?

(03 Marks)

OR

- 2 a. Obtain the following expression of a BJT of small signal analysis.
 - i) Total instantaneous collector current
 - ii) Input resistance at the base

(10 Marks)

- b. Discus the following biasing scheme used in MOS
 - i) By fixing V_{GS}
 - ii) By fixing V_{GS} and connecting a resistance in the source.

(10 Marks)

Module-2

3 a. Discuss the basic configuration of MOSFET.

(06 Marks)

b. For a common source amplifier shown in Fig Q3(b), determine R_{in}, AV₀, R₀ and G_V

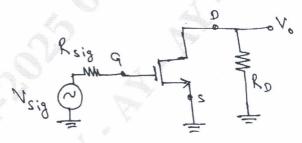


Fig Q3(b)

(14 Marks)

OR

- 4 a. For an n-channel MOSFET with $t_{ox}=10$ nm, L=1.0 μ m, W=10 μ m, $L_{0V}=0.05$ μ m, $C_{sbo}=C_{dbo}=10$ fF, $V_0=0.6$ V, $V_{SB}=1$ V and $V_{DS}=2$ V. Calculate C_{ox} , C_{ov} , C_{gs} , C_{gd} , C_{sb} and C_{db} .
 - b. Explain the working of FET based phase shift oscillator and also mention the necessary conditions for sustained oscillation. (10 Marks)

Module-3

- 5 a. Explain the following properties of Negative. Feedback.
 - i) Gain, De-sensitivity ii) Bandwidth Extension iii) Noise reduction (14 Marks)
 - b. A negative feedback amplifier has a $A_f = 100$ and $A = 10^5$. What is the feedback factor? If a manufacturing error results in a reduction of A to 10^3 , what is the closed loop voltage Gain? What is the percentage change in A_f ? (06 Marks)

OF

6 a. Explain the working of class B output stage.

(08 Marks)

- b. For emitter follower Class A output stage $V_{cc} = 10V$, I = 100 mA and $R_L = 100 \Omega$. If the output voltage is an 8 V peak sinusoid, find:
 - i) Power delivered to load
 - ii) Average power drawn from the supplies
 - iii) Power conversion efficiency ignore the loss on Q₃ and R.

(06 Marks)

c. Explain how cross over distortion can be eliminated to class AB output stage. (06 Marks)

Module-4

- 7 a. For the voltage Seri feedback amplifier, derive the expressions of
 - i) Exact voltage Gain ii) Input resistance with feedback iii) Output resistance with feedback (14 Marks)
 - b. For the inverting amplifier $R_1 = 470 \Omega$ and $R_F = 4.7 \text{ K}\Omega$. Assume A = 200000, $R_i = 2 \text{ M}\Omega$, $R_o = 75 \Omega$ and $f_o = 5 \text{ Hz}$. Calculate A_F , R_{iF} , R_{OF} and f_F . (06 Marks)

OR

- 8 a. Explain the working of instrumentation amplifier using Transducer bridge with necessary equations. (08 Marks)
 - b. Explain the working of Inverting Schmitt trigger with input and output waveforms.

(08 Marks)

c. For a Differential configuration summer R=1 K Ω , $V_a=2V$, $V_b=3V$, $V_c=4V$, $V_d=5V$ and supply voltage of \pm 15V. Determine the output voltage V_o . (04 Marks)

Module-5

- 9 a. Derive the expression of output voltage of a 4-bit Binary weighted resistor type DAC.

 Mention its disadvantages. (10 Marks)
 - b. Draw the block diagram of successive approximation ADC and explain it. (10 Marks)

OR

- 10 a. Explain the working of First order active Lowpass filter with the help of magnitude voltage gain and also design to get a cutoff frequency of 1 KHz with a passband gain of 2. (10 Marks)
 - b. Explain the working of Astable multi-vibration using 555 Timer and also derive the expression of Frequency of oscillation. (10 Marks)

* * * * *