

21EC54

Fifth Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 **Electromagnetic Waves**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. If two position vectors $\overline{A} = -2\overline{a}_x 5\overline{a}_y 4\overline{a}_z$ and $\overline{B} = 2\overline{a}_x + 3\overline{a}_y + 5\overline{a}_z$ then find,
 - i) AB

- ii) \bar{a}_A , \bar{a}_B iii) \bar{a}_{AB} iv) Unit vector from C to A where C is (3, 5, 8)

(06 Marks)

b. Ten identical charges each of 500 μc are spaced equally around a circle of radius 2 m. Find the force on a charge of $-20 \,\mu c$ located on the axis, 2m from the plane of the circle.

(07 Marks)

c. Define Electric Field Intensity. Derive expression for electric field intensity due to 'n' number of charges.

OR

- Given the two points A(2, 3, -1) and B(4, 25, 120). Find spherical coordinates of A and 2 Cartesian coordinates of B. (06 Marks)
 - b. Derive an expression for electric field intensity due to infinite line charge. (07 Marks)
 - c. Find electric field E at origin, if the following charge distribution are present in free space:
 - i) Point charge of 21nc at P(2, 0, 6)
 - ii) Uniform line charge of infinite length with charge density $\rho_{\ell} = 3 \text{ nC/m}$ at x = 2, y = 3.
 - iii) Uniform surface charge of density 0.2 nC/m^2 at x = 2.

(07 Marks)

Module-2

- a. A charge is uniformly distributed over a spherical surface of radius 'a'. Determine electric 3 field intensity at all the places, use Gauss law. (07 Marks)
 - b. Evaluate both sides of divergence theorem for the field $\overline{D} = 2xy\overline{a}_x + x^2\overline{a}_y$ C/m², for a rectangular parallel piped formed by the planes x = 0 and x = 1; y = 0 and y = 2; z = 0 and (08 Marks)
 - c. Show that electric field intensity is negative potential gradient.

(05 Marks)

- The flux density $\overline{D} = \frac{r}{3} \overline{a}_r \text{ nC/m}^2$ in free space :
 - i) Find \overline{E} at r = 0.2 m
 - ii) Find the total electric flux leaving the sphere of r = 0.2 m.
 - iii) Find the total charge within the sphere of r = 0.3 m

(07 Marks)

b. State and prove Gauss divergence theorem.

(07 Marks)

c. Derive an expression for continuously equation.

(06 Marks)

Module-3

5 a. Determine whether or not the following potential fields satisfy the Laplace's equation:

i) $V = x^2 - y^2 + z^2$

- ii) $V = r \cos \phi + z$
- iii) $V = r \cos\theta + \phi$

(06 Marks)

- b. Evaluate both sides of Stoke's theorem for the field $\overline{H} = 6xy\overline{a}_x 3y^2a_y$ A/m, for rectangular path around the region, $2 \le x \le 5$, $-1 \le y \le 1$, z = 0. (08 Marks)
- c. Explain the concept of magnetic potential.

(06 Marks)

OR

6 a. State and prove uniqueness theorem.

(06 Marks)

- b. Two plates of parallel plate capacitor are separated by distance 'd' and maintained at potential zero and V₀ respectively. Determine,
 - i) Potential at any position between the plates
 - ii) Surface charge density on the plates
 - iii) Capacitance between the plates.

(08 Marks)

c. Find the magnetic flux density at the centre 'O' of a square of sides equal to 5 m and carrying 10 A of current. (06 Marks)

Module-4

- 7 a. Derive an expression for force on a differential current element and find force experienced by conductor of 6 m long, lies along z-direction with a current of 2A in \bar{a}_z direction, if $\bar{B} = 0.08\bar{a}_z T$. (07 Marks)
 - b. Explain magnetization and permeability.

(07 Marks)

c. Derive boundary conditions at the interface of two magnetic materials.

(06 Marks)

OR

- 8 a. A point charge of Q = -1.2C has velocity $\overline{v} = (5\overline{a}_x + 2\overline{a}_y 3\overline{a}_z)$ m/s. Find the magnitude of force exerted on the charge if,
 - i) $\overline{E} = -18\overline{a}_x + 5\overline{a}_y 10\overline{a}_z$ V/m
 - ii) $\overline{B} = -4\overline{a}_x + 4\overline{a}_y + 3\overline{a}_z T$
 - iii) Both are present simultaneously.

(07 Marks)

- b. Find the magnetization in a magnetic material where:
 - i) $\mu = 1.8 \times 10^5 \text{ H/m}$ and M = 120 A/m
 - ii) $\mu = 22$, there are 8.3×10^{28} atoms/m³ each atom has a dipole moment of 4.5×10^{-27} A/m² and
- $_{0}$ iii) B = 300 μ T and $X_{m} = 15$

(07 Marks)

State and explain Faraday's law of electromagnetic induction. Hence obtain Maxwell's equation in point form and integral form. (06 Marks)

Module-5

- 9 a. Derive Maxwell's equations for time varying fields, represent them in point form and integral form. (08 Marks)
 - b. Obtain relationship between \overline{E} and \overline{H} in free space.

(06 Marks)

21EC54

c. In free space $\overline{E} = 50\cos(\omega t - \beta z)\overline{a}_x$ V/m. Find the average power crossing a circular area of radius 2.5m in the plane z = 0. (06 Marks)

OR

- 10 a. Given $\overline{E} = E_m \sin(\omega t \beta z) \overline{a}_y$ in free space, find \overline{D} , \overline{B} and \overline{H} . Sketch \overline{E} and \overline{H} at t = 0.

 (08 Marks)
 - b. Explain wave propagation in good conductor with relevant equations. (08 Marks)
 - c. Wet marshy soil is characterized by $\sigma = 10^{-2}$ s/m, $\epsilon_r = 15$ and $\mu_r = 1$. At 1 MHz whether soil be considered as conductor or dielectric. (04 Marks)

* * * * *