17EC73

Seventh Semester B.E. Degree Examination, Dec.2024/Jan.2025 **Power Electronics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Draw symbols and control characteristics of the following power semiconductor devices i) SCR ii) GTO iii) SITH iv) IGBT v) BJT. (10 Marks)
 - b. Explain different types of power electronics circuits and mention their applications.

(10 Marks)

OR

- 2 a. Explain the switching characteristics of power BJT with the help of its transient model.
 (10 Marks)
 - b. Explain the operation of n-channel enhancement types MOSFET with its transfer characteristics. (10 Marks)

Module-2

- 3 a. Explain two transistor model of SCR and derive an expression for anode current in terms of transistor parameters for a thyristor. (10 Marks)
 - b. Explain static anode-cathode characteristics of SCR.

(10 Marks)

OR

a. Explain gate characteristics of SCR with a neat diagram.

(10 Marks)

b. Explain different turn-on methods of SCR.

(05 Marks)

c. Differentiate between natural and forced commutation.

(05 Marks)

Module-3

- 5 a. Explain the operation of single phase semi converter with inductive load with relevant waveforms. (08 Marks)
 - b. Explain the principle of on-off control of a AC voltage controller.

(06 Marks)

c. A single phase full converter is fed from 230 V 50 Hz supply. Find the average load voltage and current if the load resistance is 10Ω and firing angle is 45° . (06 Marks)

OR

6 a. Explain the operation of single phase full converter with RL load with relevant circuit and waveforms. (08 Marks)

- b. A single phase half wave AC voltage controller has a resistance load of R = 5 Ω and input voltage V_S = 120 V, 60 Hz. The delay angle of thyristor is $\alpha = \pi/3$. Determine :
 - i) RMS output voltage
 - ii) Input power factor
 - iii) Average input current.

(07 Marks)

c. What are the applications of AC voltage controller?

(05 Marks)

Module-4

- 7 a. The dc chopper has a resistive load $R = 10 \Omega$ and the input voltage is $V_s = 220 \text{ V}$. When the convertor switch remains 'ON' its voltage drop is $V_{ch} = 2 \text{ V}$ and the chopping frequency is f = 1 KHz. It the duty cycle is 50%, calculate
 - i) The average output voltage
 - ii) The rms output voltage
 - iii) The converter efficiency
 - iv) The effective input resistance R_i of the converter

(10 Marks)

b. Explain the operation of step down chopper with RL load and derive an expression for peak to peak load ripple current. (10 Marks)

OR

- 8 a. With the help of circuit diagram, explain four quadrant type E chopper. (10 Marks)
 - b. With the help of circuit diagram and waveforms, explain the operation of a boost regulator.

 Derive the expression for peak to peak ripple current. (10 Marks)

Module-5

9 a. Explain single phase half bridge inverter with neat circuit diagram and waveforms.

(10 Marks)

b. The single-phase half-bridge inverter has a resistive load of $R=2.4~\Omega$ and the dc i/p v/g Vs=48~V. Determine i) the rms o/p v/g at the fundamental frequency V_{01} , ii) the output power P_0 iii) average and peak currents of each transistor iv) the peak reverse blocking voltage V_{BR} of each transistor. (10 Marks)

OR

10 a. Explain dc switches with neat circuit diagram.

(06 Marks)

b. Outline various performance parameters used for inverters.

(08 Marks)

c. Explain single phase AC switches.

(06 Marks)

* * * * *