Neg. 110.	Reg. No.							- 94	
-----------	----------	--	--	--	--	--	--	------	--

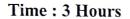
I Semester M.Sc. Degree Examination, March/April - 2025 & OF GREAT

CHEMISTRY

Mathematics for Chemistry

(CBCS Scheme 2019-20)

Paper: Ch-105



Instructions to Candidates:

Maximum Marks: 70

Answer question No.1 and any Five questions of the remaining questions.

Answer any Ten of the following.

 $(10 \times 2 = 20)$

1. a) If
$$\vec{a} = 2\vec{i} + \vec{j} + 3\vec{k}$$
, $\vec{b} = -\vec{i} + 2\vec{j} + \vec{k}$ and $\vec{c} = 3\vec{i} + \vec{j} + 2\vec{k}$ find $\vec{a} \cdot (\vec{b} \times \vec{c})$

- b) A helium atom is moving with a velocity of 20i-15j m/s. What is its speed?
- c) Evaluate $\vec{i} \cdot (\vec{j} \times \vec{k}) + (\vec{i} \times \vec{k}) \cdot \vec{j}$

d) If
$$A = \begin{bmatrix} 1 & 5 & 6 \\ -6 & 7 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -5 & 7 \\ 8 & -7 & 7 \end{bmatrix}$, find A+B and A-B.

- e) Find the derivative of $y = \sqrt{x} + \text{dn}3x + \text{Cos}(7x)$
- f) Find $\frac{dy}{dx}$ for the function $x = a \cos t$, $y = b \sin t$
- g) The ideal gas equation is PV = nRT, find $\left(\frac{\partial T}{\partial P}\right)_{V}$
- h) In X-ray Crystallography, the Braggs equation is given by $n\lambda = 2d \sin \theta$ where 'd' is distance between successive layers in a crystal and 'n' is an integer. If ' θ ' is the angle through which the X- rays are scattered and ' λ ' is the wavelength of the X-rays, what is the rate of change of ' λ ' w.r.t. ' θ '

[P.T.O.

- Find $\int x^2 logx dx$ i)
- Integrate $\int \sin Mx$ j)
- Find the solution of the differential equation (x+1)dy + (y-1)dx = 0Two dice are rolled simultaneously. Find the probability of having no doubles. k)
- 1)
- Show that four points, $\vec{a} + 4\vec{b} 3\vec{c}$, $3\vec{a} + 2\vec{b} 5\vec{c}$, $-3\vec{a} + 8\vec{b} 5\vec{c}$ and $-3\vec{a} + 2\vec{b} + \vec{c}$ are 2. a) coplanar.
 - Find the volume of the parallelopiped whose. edges are represented by the vectors. b) $\vec{a} = 2\vec{i} - 3\vec{j} + 4\vec{k}$, $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$ and $\vec{c} = 3\vec{i} - \vec{j} + 2\vec{k}$ (5+5)
- Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ -3 & 5 & 6 \end{bmatrix}$ 3. a)
 - Solve the following equations by Cramer's method or determinant method. b) $x+\ y+\ z=7$ x+2v+3z = 16(5+5)x+3y+4z = 22
- Find $\frac{dy}{dx}$ for the following functions i) $x^4 (3x + 2)^3$ and ii) y+Siny = Cos x 4.
 - Find the derivative by using Chain rule for the function $y = \left[\cos \left(\sin e^x \right) \right]^2$ b)
- The Lennard Jones potential describes the potential energy 'V' between the helium 5. a) atoms separated by a distance 'R'. The equation of this function is $V(R) = \frac{A}{R^{12}} - \frac{B}{R^6}$, where A and B are constants. The two particles are at their equilibrium separation when the potential is at a minimum. Find the equilibrium distance 'R'.
 - The probability density function of an electron at a distance 'r' from the centre of the b) nucleus of the hydrogen atom is $P(r) = \frac{4r^2}{a_0^2} e^{\frac{-2r}{a_0}}$ where a_0 is the Bohr radius which is the most probable maximum distance of an electron from the nucleus. Then show that when $r = a_0 P(r)$ is maximum. (5+5)

- Evaluate $\int e^x \sin x dx$ 6. a)
 - Evaluate $\int \frac{x-1}{(x-2)(x-3)} dx$

(5+5)

- Solve (2ax + by)ydx + (ax + 2by)xdy = 07.
 - Find $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial y \partial x}$, $\frac{\partial^2 u}{\partial y^2}$ for the following functions.
 - $u = 2x^2 5xy + y^2$ and

$$ii) \quad u = x \log y \tag{5+5}$$

- Find the maxima, minima and point of inflexon for the cubic function 8. $y = x^3 - 3x^2 - 144x$
 - Obtain the fourier series of $f(x) = \frac{\pi x}{2}$ in the interval $0 < x < 2\pi$, Hence, b) deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

(5+5)