- 1
- 1
- 1

22MCA11

First Semester MCA Degree Examination, Dec.2024/Jan.2025 Mathematical Foundation for Computer Applications

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. Use of statistical table is permitted.

		Module – 1	M	L	С
Q.1	a.	Define Union and Intersection of two sets, and give a proper example.	06	L3	CO1
	b.	For any two sets state and prove De Morgan's laws.	06	L3	CO1
	c.	Find the eigen values and eigen vectors of the matrix $A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	08	L3	CO1
		OR			
Q.2	a.	Let $A = \{1, 2, 3, 7\}$, $B = \{1, 2, 3, 4\}$, $C = \{x / x \text{ is a positive integer and } x^2 \le 9\}$ Compute the following: (i) $A \cup (B - C)$ (ii) $(A - B) \cap C$ (iii) $(A \cup B) - (B \cap C)$	06	L3	C01
	b.	 (i) Explain the pigeonhole principle. (ii) Let ΔABC be an equilateral triangle of side 1 unit show that if we select 10 points in the interior of the triangle, there must be at least two points whose distance apart is less than 1/3. 	06	L3	CO1
	c.	In a hostel of strength 70, 40 of them knew Kannada, 35 knew Hindi and 15 of them knew both. Find out the following: (i) How many of them know atleast one of the languages? (ii) How many know neither Kannada nor Hindi? (iii) How many of them knew only Kannada?	08	L3	CO1
		Module – 2			
Q.3	a.	Show that $[(p \to r) \land (q \to r)] \to [(p \lor q) \to r]$ is a tautology.	06	L2	CO3
	b.	Prove the statement. "The square of an even integer is an even integer" by the method of contradiction.	06	L2	CO3
	c.	What is a proposition? Let p and q be the propositions of "swimming in the new jersy seashore is allowed and sharks have been near the sea shore". Express each of the following compound propositions as an English sentence: (i) p → ~ q (ii) ~p → ~q (iii) p ↔ q	08	L2	CO3

	O.D.			22MCA1		
Q.4	a.	If $A = \{1, 2, 3, 4, 5\}$ is the universal set, determine the truth values of each of the following statements: (i) $\forall x \in A, (x + 2 < 10)$ (ii) $\forall x \in A, (x \ge 5)(x + 2 = 10)$ (iii) $\forall x \in A, (x^2 \le 25)$	06	L2	CO3	
	b.	What is the truth value of $\forall x (x^2 \ge x)$ (i) If the domain contains of all real numbers (ii) If the domain contains of all integers	06	L2	CO3	
	c.	Verify the principle of duality for the given logical equivalence $[\sim (p \land q) \rightarrow \sim p \lor (\sim p \lor q)] \Leftrightarrow \sim p \lor q$	08	L2	CO3	
		Module – 3				
Q.5	a.	Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 3), (1, 1), (3, 1), (1, 2), (3, 3), (4, 4)\}$ be a relation on A. Determine (i) R is reflexive (ii) symmetric (iii) Transitive	06	L3	CO1	
	b.	Let $A = \{1, 2, 3, 4, 5\}$. Define relation R on $A \times A$ by (x_1, y_1) R (x_2, y_2) if and only if $x_1 + y_1 = x_2 + y_2$. Determine partition of $A \times A$ induced by R.	06	L3	CO1	
	c.	Determine the relations R and the associated matrix by examining each of the following diagrams: (i) (ii) Fig.Q5(c)(ii) Fig.Q5(c)(iii)	08	L3	CO1	
		OR				
Q.6	a.	Define Partitions and equivalence class with examples.	06	L3	CO1	
	b.	Draw the Hasse diagram representing the partial ordering {(a, b) / a divided b} on { 1, 2, 3, 4, 6, 8, 12 }	06	L3	CO1	
	c.	Draw Hasse diagram for all the positive integer divisors of 72.	08	L3	CO1	
		Module – 4				
Q.7	a.	The probability distribution function $P(X)$ of a variable X is given by the following table:	12	L3	CO2	
	b.	The probability that a pen manufactured by a company will be defective is 1/10 if 12 such pens are manufactured. Find the probability that (i) Exactly two will be defective (ii) atleast two will be defective (iii) None will be defective.	08	L3	CO2	

.

		OR	2	ZIVI	C A1 1
Q.8	a.	Find the constant K such that	12	L3	CO
V. 0			1-		
		$f(x) = \begin{cases} Kx^2 & , & 0 < x < 3 \\ 0 & , & \text{otherwise} \end{cases}$ is a pdf.			
		Also compute			
		(i) $P(1 < x < 2)$ (ii) $P(x \le 1)$ (iii) $P(x > 1)$			
		(iv) Mean (v) Variance.			
	b.	For the standard normal distribution of a random variable z, evaluate the	08	L3	CO
		following:			
		(i) $P(0 \le z \le 1.45)$			
		(ii) $P(-3.40 \le z \le 2.65)$			
		(iii) $P(-2.55 \le z \le -0.8)$			14
		(iv) $P(z \le -3.35)$			
0.0		Module – 5	0.6	T 2	00
Q.9	a.	Define the following with suitable examples:	06	L2	CO
		(i) Simple Graph (ii) K-Regular graph			
		(iii) Bi-Partite graph			
		(iii) Bir artice graph		-	
	b.	Define vertex coloring and find the vertex chromatic number for the	06	L2	CO
		following graphs:			
		(i) V2 (ii)			
		Via Via			
		V5 V6			
		N, 13			
		N4			
		Fig.Q9(b)(i)			
		Fig.Q9(b)(ii)			
	c.	Define isomorphism of graph and verify whether given graphs are	08	L2	CO
		isomorphic to each other.	00		
		(i) v, (ii)	4		
		V ₆			
		No N2		-	
		V5 1,0 V2 V2			
		Va V8			
		Ny G1 Ng Uq G2 8			
		Fi = 00(-)(ii)	-		
		Fig.Q9(c)(i)			
		OR			
		Define with suitable examples:	06	L2	CO
Q.10	a.				-
Q.10	a.	(i) Hamilton path			
Q.10	a.				

b.	Verify Euler's formula for the planar graphs given below:	06	L2	CO4
	Fig.Q10(b)(i) Fig.Q10(b)(ii)		D2	COT
c.	Using Dijkstra's algorithm, find the shortest path and its weight from the vertex 1 to each of the other vertices 2, 3, 4, 5, 6 in the weighted and directed graph (Network) given below. Fig.Q10(c)	08	L2	CO4