USN

MMC104

First Semester MCA Degree Examination, Dec.2024/Jan.2025 Operating System

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

Module – 1 What is the significance of Operating System? Illustrate various serving provided by the Operating System. What is the purpose of system calls? Describe different types of system calls used in Operating system with examples. OR Illustrate the following operating system architectures with a rediagram: (i) Microkernel	tem 10	L L2	
What is the purpose of system calls? Describe different types of system calls used in Operating system with examples. OR Illustrate the following operating system architectures with a ridiagram:	tem 10		CO1
OR Illustrate the following operating system architectures with a ridiagram:		L2	CO1
Illustrate the following operating system architectures with a r diagram:	neat 10		
diagram:	neat 10		,
(ii) Layered		L2	CO1
Illustrate with a neat diagram various states of process. Also discuss significance of process control block (PCB).	the 10	L2	CO1
Module – 2	7-7		
"CPU scheduling ensures proper execution of processes". Justify. Illustrate different scheduling criteria used by CPU scheduling algorith	ms. 10	L2	CO1
Discuss how dining philosophers problem is solved using semaphores.	10	L3	CO1
OR OR			
What do you mean by Critical Section Problem? Explain the solution the critical-section problem using mutex locks.	10 10	L2	CO1
Turnaround time using	ents .	·L3	CO1
	P4 3 1 5 P5 4 5 2 The work the Gantt Chart and calculate the Average waiting time and Average using 1) SJF Scheduling (Non Pre-emptive) 2) Priority Scheduling (Non Pre-emptive)	P4 3 1 5 P5 4 5 2 The work the Gantt Chart and calculate the Average waiting time and Average rnaround time using 1) SJF Scheduling (Non Pre-emptive)	P4 3 1 5 P5 4 5 2 The work the Gantt Chart and calculate the Average waiting time and Average rnaround time using 1) SJF Scheduling (Non Pre-emptive) 2) Priority Scheduling (Non Pre-emptive)

				MM	C104
		Module – 3			
Q.5	a.	Illustrate deadlocks with their necessary conditions.	10	L2	CO2
	b.	Describe the working principles of Banker's algorithm for the following snapshot and find either the system is in safe state or not.	10	L2	CO2
		Allocation Max Available A B C D A B C D A B C D			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		OR			
Q.6	a.	Discuss deadlock detection with a neat diagram.	10	L2	CO2
	b.	Explain different methods used for recovering from a deadlock in an operating system.	10	L2	CO2
		Module – 4		-	
Q.7	a.	Describe in detail the concept of Paging with a neat diagram.	10	L3	CO3
	b.	Differentiate between internal and external fragmentation.	10	L2	CO3
	υ.	Differentiate between internal and external fragmentation.	10		COS
		OR			
Q.8	a.	Consider the page reference string: 1,0,7,1,0,2,1,2,3,0,3,2,4,0,3,6,2,1 for a memory with three frames. Determine the number of page faults using the FIFO, Optimal, and LRU replacement algorithms. Which algorithm is most efficient?	10	L3	CO3
	b.	Interpret the concepts of demand paging with neat diagram.	10	L2	CO3
		Module – 5			
Q.9	a.	Illustrate the following access methods.i) Sequential accessii) Direct access	08	L2	CO3
	b.	Illustrate in detail the various operations performed on a file.	08	L2	CO3
	c.	Explain the following: i) Bit vector ii) Linked list	04	L2	CO3
Q.10	a.	Illustrate various levels of directory structures.	10	L2	CO3
	b.	List the different file allocation methods and explain any two methods in detail.	10	L2	CO3

* * * * *