

Time: 3 hrs.

21CS34

Third Semester B.E./B.Tech. Degree Examination, June/July 2025

Computer Organization and Architecture

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. With a neat diagram, analyze the basic operational concepts of a computer. Give the operating steps. (06 Marks)
 - b. Explain the basic instruction types with examples. (04 Marks)
 - c. Explain: (i) Processor clock
 - (ii) Clock rate
 - (iii) Basic performance equation
 - (iv) Performance measurement

(10 Marks)

OR

- 2 a. Define addressing mode, explain any three addressing modes with examples. (10 Marks)
 - b. Write an assembly program that reads a line of characters and displays it. (06 Marks)
 - c. Explain Big-Endian and Little-Endian addressability.

(04 Marks)

Module-2

- 3 a. Define Interrupt. Explain various ways of enabling and disabling interrupts. (08 Marks)
 - b. With a neat diagram, explain any three methods for handling multiple interrupt requests raised by multiple devices. (12 Marks)

OR

4 a. With a neat diagram, explain DMA. Briefly explain centralized bus arbitration technique.

(10 Marks)

b. Explain synchronous and Asynchronous bus with timing diagrams.

(10 Marks)

Module-3

- 5 a. With a neat diagram, explain the internal organization of 128×8 memory chip. (10 Marks)
 - b. What is cache memory? Explain the direct and associative mapping techniques. (10 Marks)

OR

6 a. What is memory interleaving? Explain with an example.

(10 Marks)

b. Define Virtual memory. Explain the address translation.

(10 Marks)

Module-4

7 a. Draw 4-bit carry-look-ahead adder and explain.

(10 Marks)

b. Perform multiplication for +13 and -6 using Booth's algorithm. Explain Booth's algorithm. (10 Marks)

OR

8 a. Explain three-bus organization of data path with a neat diagram.

b. Explain Hard wired control unit organization in a processing unit.

(06 Marks) (06 Marks)

c. Write actions required and control sequence for execution of instruction ADD (R3), R1.

Module-5

9 a. Define Parallel Processing. Explain processor with multiple functional units.
b. Define Pipelining. Explain five stage instruction pipeline with timing diagram.
(10 Marks)
(10 Marks)

OR

a. Explain arithmetic pipeline with suitable example.
b. Explain instruction pipeline with suitable example.
(10 Marks)
(10 Marks)

* * * * *