BCS405C

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025

Optimization Techniques

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		2.79			
		Module – 1	M	L	C
Q.1	a.	Obtain the partial derivatives for: i) $f(x, y) = (x + 2y^3)^2$ ii) $f(x, y) = x^2y + xy^3$.	4	L3	CO1
	b.	If L is called a Least – squares loss function defined as L(e) = $\ e\ ^2$ with $e(\theta) = y - \phi \theta$, where $\theta \in \mathbb{R}^D$ is a parameter vector, $\phi \in \mathbb{R}^{NXD}$ are input features and $y \in \mathbb{R}^N$ are the corresponding observations. Determine the dimensionality of the gradient $\frac{\partial L}{\partial \theta}$.	8	L3	CO1
	c.	Obtain Taylor's series expansion of $f(x, y) = x^2y + 3y - 2$ in terms of (x-1) and (y+2) upto second degree terms.	8	L3	CO1
		OR			
Q.2	a.	If \vec{x} , $\vec{y} \in \mathbb{R}^2$ and $y_1 = -2x_1 + x_2$, $y_2 = x_1 + x_2$. Show that the Jacobian determinant $ \det J = 3$.	4	L3	CO1
	b.	Discuss the gradient of vector with respect to matrix. Hence obtain the gradient of vector $\vec{f} = \begin{bmatrix} e^{x_0x_1} & e^{x_2x_3} \end{bmatrix}$ with respect to the matrix $\vec{x} = \begin{bmatrix} x_0 & x_1 \\ x_2 & x_3 \end{bmatrix}$	8	L3	CO1
	c.	Obtain second order Taylor's series expansion of $f(x, y) = x^2y + 5xe^y$ about the point $a = 1$, $b = 0$.	8	L3	CO1
		Module – 2			
Q.3	a.	Construct computational graphs of the function $f(x) = \sqrt{x^2 + e^{x^2}} + \cos(x^2 + e^{x^2}). \text{Also} \text{find} \frac{df}{dx} \text{using} \text{automatic}$ differentiation.	6	L3	CO2
	b.	Obtain the gradient of quadratic cost.	7	L3	CO2

	c.	Find the output at neuron O_5 , if input vector $[0.7, 0.3]$ using i) Logistic sigmoid ii) tan h x as the activation functions. $ \omega_{30} = 0.6 $ $ \omega_{31} = 0.1 $ $ \omega_{32} = 0.3 $ $ \omega_{42} = 0.4 $ $ \omega_{40} = 0.8 $ Fig. Q3(c)	7	L3	CO2
0.4		OR Obtain the gradient of Mean Squared Error (MSE).	8	L3	CO2
Q.4	a.	Obtain the gradient of Wear Squared Error (WOE).	U	LIJ	002
	b.	Assume that the neurons have a sigmoid activation function. Perform a forward pass and a backward pass on the network. Assume that the actual output of y is 0.5 and learning rate is 1. Perform another forward pass.			
		Module – 3			1
Q.5	a.	Define convex set. Explain separating hyper plane of convex of convex sets.	6	L2	CO3
u.	b.	Minimize $f(x) = 3x_1^2 + 4x_2^2 + 5x_3^2$, Subject to the constraint $x_1 + x_2 + x_3 = 10$.	7	L3	CO3
	c.	Find Max. $f(x) = x(5\pi - x)$ on [0, 20] with $\varepsilon = 0.1$ by using 3 – point interval search method.	. 7	L3	CO3
	1	OR	T	1	T
Q.6	a.	Define Hessian matrix. Use it to classify the relative extrema for the function, $f(x, y) = \frac{1}{3}x^3 + xy^2 - 8xy + 3$	10	L3	CO3
	b.	Write Fibonacci search algorithm and also use it to minimize $f(x) = x(x - 1.5)$ over [0, 1] within the interval of uncertainty 0.25 of the initial interval of uncertainty.	10	L3	CO3

		Module – 4			
Q.7	a.	Write Newton Raphson algorithm and use it to find the approximate maximum of $f(x) = 2\sin x - \frac{x^2}{10}$ with initial guess of 2.5.	10	L3	CO4
	b.	Use Steepest descent method to minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point $x_{(0)} = (0, 0)$ [perform 3 iterations].	10	L3	CO4
		OR			
Q.8	a.	 i) Write the Stochastic Gradient Descent algorithm. ii) Write the differences between Stochastic Gradient Descent and Mini Batch Gradient Descent methods. 	10	L3	CO4
	b.	Use Newton Raphson method to minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1 x_2 + x_2^2, \text{ by taking the starting point}$ $x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$	10	L3	CO4
		Module – 5		1	
Q.9	a.	Explain i) Adagrad optimization strategy ii) RMS prop iii) Adam.	15	L3	CO5
	b.	Describe the saddle point problem in machine learning.	5	L2	CO5
		OR			
Q.10	a.	What is the difference between convex optimization and non – convex optimization?	6	L2	CO5
	b.	Write a note on stochastic gradient descent with momentum.	7	L3	CO5
	c.	Explain the advantages of RMS prop over Adagrad.	7	L3	CO5

* * * * *