Time: 3

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025

Design and Analysis of Algorithms

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Algorithm. Explain its characteristics.

(05 Marks)

- b. Define space complexity and time complexity of an algorithm and compute the time complexity of Fibonacci numbers algorithm. (05 Marks)
- c. What are the various basic Asymptotic efficiency classes? Explain Big O, Big Ω , Big θ notations with examples. (10 Marks)

OR

- 2 a. Give the mathematical analysis of non recursive matrix multiplication algorithm. (05 Marks)
 - Mention the important problem type considered for design and analysis. Explain any two problem types.
 (05 Marks)
 - c. Give the general plan for analyzing time efficiency of recursive algorithms and also analyze the tower of Hanoi recursive algorithm. (10 Marks)

Module-2

- 3 a. Discuss the general method of divide and conquer along with control abstraction. (06 Marks)
 - b. Write an algorithm for Merge sort. Also demonstrate the applicability of Master's theorem to compute the time complexity of merge sort. (06 Marks)
 - c. Sort the below given array of elements using quick sort. Mention time complexity.

65	40	75	80	45

(08 Marks)

OR

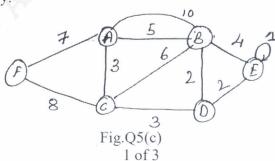
4 a. What are the disadvantage of divide and conquer approach?

(04 Marks)

b. Discuss decrease and conquer algorithmic technique. Explain its variations.

(06 Marks)

- c. Write an algorithm for the below given problem in divide and conquer approach:
 - i) Strasson's matrix
 - ii) Finding maximum and minimum element in an array.


(10 Marks)

Module-3

5 a. Differentiate between Prim's and Kruskal's algorithm.

(04 Marks)

- b. Apply Greedy technique to solve the following instances of Knapsack problem n = 7, M 15 profit (50, 10, 15, 7, 8, 9, 4), weight = (10, 3, 5, 4, 1, 3, 2). (08 Marks)
- c. Find minimum cost spanning tree for the following graph by using Kruskal algorithm. Mention time complexity.

(08 Marks)

OR

6 a. Find the shortest path for the given input using Dijikstra's algorithm. Consider source node as A.

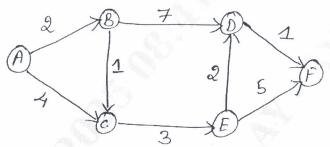


Fig.Q6(a)

(08 Marks)

b. Define Heap. Write Bottom – up Heap construction algorithm.

(06 Marks)

c. Write job sequencing with dead line algorithm. Also obtain an optimal schedule for the following jobs with n = 7, profits = {35, 30, 25, 20, 15, 12, 05} and deadline = {3, 4, 4, 2, 3, 1, 2} respectively. (06 Marks)

Module-4

7 a. Explain multistage graph with an example. Write backward multistage graph algorithm.

(10 Marks)

b. Apply Warshall's algorithm to find the transitive closure of the following graph.

Fig.Q7(b)

(10 Marks)

OR

8 a. Apply Floyd's algorithm to solve all pair shortest path for the given graph.

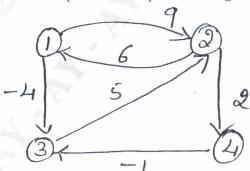


Fig.Q8(a)

(10 Marks)

b. Construct optimal binary search tree for the following set of values:

Keys	1	2	3	4
Probability	4	2	6	3

(10 Marks)

Module-5

9 a. Explain N – Queen problem with example.

(10 Marks)

b. Solve the following assignment problem using branch and bound technique:

	\rightarrow Job				
		J1	J2	J3	J4
8	a	9	2	7	8
Person	b	6	4	3	7
	С	5	8	1	8
	d	7	6	2	4

(10 Marks)

OR

10 a. Explain Hamiltonian cycles with example.

(08 Marks)

b. Solve the travelling sales problem using branch and bound technique:

	1	2	3	4	5
1	00	20	30	10	11
2	15	∞	16	4	2
3	3	5	∞ ⊘	2	4
4	19	6	18	×	3
5	16	4	7	16	∞

(12 Marks)

* * * * *